0,3
Table of n, a(n) for n=0..16.
a(n) = [x^n] 1/(1 - n*x/(1 - 2*n*x/(1 - 3*n*x/(1 - 4*n*x/(1 - 5*n*x/(1 - ...)))))), a continued fraction.
a(n) = A000312(n)*A001147(n).
Table[n! SeriesCoefficient[1/Sqrt[1 - 2 n x], {x, 0, n}], {n, 0, 16}]
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-i n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[n^n (2 n - 1)!!, {n, 1, 16}]]
Main diagonal of A292783.
Cf. A000312, A001147, A061711, A291699.
Sequence in context: A276482 A202788 A285028 * A003772 A211078 A299382
Adjacent sequences: A292781 A292782 A292783 * A292785 A292786 A292787
nonn
Ilya Gutkovskiy, Sep 23 2017
approved