login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003487 a(n) = a(n-1)^2 - 2.
(Formerly M3926)
7
5, 23, 527, 277727, 77132286527, 5949389624883225721727, 35395236908668169265765137996816180039862527, 1252822795820745419377249396736955608088527968701950139470082687906021780162741058825727 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The next term has 175 digits. - Harvey P. Dale, Feb 19 2015

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10

P. Liardet and P. Stambul, Séries d'Engel et fractions continuées, Journal de Théorie des Nombres de Bordeaux 12 (2000), 37-68.

Wikipedia, Engel Expansion

Index entries for sequences of form a(n+1)=a(n)^2 + ...

FORMULA

a(n) = ceiling(c^(2^n)) where c=(5+sqrt(21))/2 is the largest root of x^2-5x+1=0. - Benoit Cloitre, Dec 03 2002

a(n) = 2*T(2^n,5/2) where T(n,x) is the Chebyshev polynomial of the first kind. - Leonid Bedratyuk, Mar 17 2011

Engel expansion of 1/2*(5 - sqrt(21)). Thus 1/2*(5 - sqrt(21)) = 1/5 + 1/(5*23) + 1/(5*23*527) + .... See Liardet and Stambul. Cf. A001566, A003010 and A003423. - Peter Bala, Oct 31 2012

From Peter Bala, Nov 11 2012: (Start)

a(n) = ((5 + sqrt(21))/2)^(2^n) + ((5 - sqrt(21))/2)^(2^n).

sqrt(21)/6 = product {n = 0..inf} (1 - 1/a(n)).

sqrt(7/3) = product {n = 0..inf} (1 + 2/a(n)).

a(n) - 1 = A145504(n+1).

(End)

a(n) = A003501(2^n). - Michael Somos, Dec 06 2016

MAPLE

a:= n-> simplify(2*ChebyshevT(2^n, 1/2*5), 'ChebyshevT'):

seq(a(n), n=0..7);

MATHEMATICA

NestList[#^2-2&, 5, 10] (* Harvey P. Dale, Feb 19 2015 *)

a[ n_] := If[ n < 0, 0, 2 ChebyshevT[2^n, 5/2]]; (* Michael Somos, Dec 06 2016 *)

PROG

(PARI) {a(n) = if( n<0, 0, polchebyshev(2^n, 1, 5/2) * 2)}; /* Michael Somos, Dec 06 2016 */

CROSSREFS

Cf. A001566 (starting with 3), A003010 (starting with 4), A003423 (starting with 6). A001601, A145504.

Sequence in context: A018899 A080990 A172036 * A055490 A261935 A299360

Adjacent sequences:  A003484 A003485 A003486 * A003488 A003489 A003490

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

One more term from Harvey P. Dale, Feb 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 21:22 EST 2019. Contains 329079 sequences. (Running on oeis4.)