login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003130 Impedances of an n-terminal network.
(Formerly M4873)
3
1, 12, 157, 1750, 17446, 164108, 1505099, 13720902, 125782441, 1167813944, 11029947952, 106273227216, 1046320856673, 10537366304920, 108606982421301, 1145873284492738, 12375688888657414, 136802023177966948, 1547385154016264531 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

G. C. Greubel, Table of n, a(n) for n = 2..565

J. Riordan, The number of impedances of an n-terminal network, Bell Syst. Tech. J., 18 (1939), 300-314.

FORMULA

a(n) = A003128(n) + 2 * A003129(n) + U(n) where U(n) = Sum_{k=2..n} u(n) * Stirling2(n, k), and u(n) = (20(n)_4 + 10(n)_5 + (n)_6) / 8 where (n)_k = n * (n - 1) * ... * (n - k + 1) denotes the falling factorial. - Sean A. Irvine, Feb 03 2015

MATHEMATICA

A003128[n_]:= A003128[n]= Sum[StirlingS2[n, k]*Binomial[k, 2], {k, 0, n}];

A003129[n_]:= A003129[n]= Sum[StirlingS2[n, k]*Binomial[Binomial[k, 2], 2], {k, 0, n}];

U[n_]:= Sum[15*k*Binomial[k+1, 5]*StirlingS2[n, k], {k, 0, n}];

A003130[n_]:= A003128[n] +2*A003129[n] +U[n];

Table[A003130[n], {n, 0, 40}] (* G. C. Greubel, Nov 04 2022 *)

PROG

(Magma)

A003128:= func< n | (&+[Binomial(k, 2)*StirlingSecond(n, k): k in [0..n]]) >;

A003129:= func< n | (&+[Binomial(Binomial(k, 2), 2)*StirlingSecond(n, k): k in [0..n]]) >;

U:= func< n | 15*(&+[k*Binomial(k+1, 5)*StirlingSecond(n, k): k in [0..n]]) >;

A003130:= func< n | A003128(n)+ 2*A003129(n) +U(n) >;

[A003130(n): n in [2..40]]; // G. C. Greubel, Nov 04 2022

(SageMath)

def A003128(n): return sum(binomial(k, 2)*stirling_number2(n, k) for k in range(n+1))

def A003129(n): return sum(binomial(binomial(k, 2), 2)*stirling_number2(n, k) for k in range(n+1))

def U(n): return 15*sum(k*binomial(k+1, 5)*stirling_number2(n, k) for k in range(n+1))

def A003130(n): return A003128(n) +2*A003129(n) +U(n)

[A003130(n) for n in range(2, 40)] # G. C. Greubel, Nov 04 2022

CROSSREFS

Cf. A003128, A003129.

Sequence in context: A110216 A218839 A036276 * A015000 A220225 A213376

Adjacent sequences: A003127 A003128 A003129 * A003131 A003132 A003133

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sean A. Irvine, Feb 03 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 8 11:37 EST 2023. Contains 360138 sequences. (Running on oeis4.)