This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002830 Number of 3-edge-colored trivalent graphs with 2n nodes. (Formerly M3871 N1586) 4
 1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330, 2403140605, 52655943500, 1260724587515, 32726520985365, 915263580719998, 27432853858637678, 877211481667946811, 29807483816421710806, 1072542780403547030073, 40739888428757581326987 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Andrew Howroyd, Table of n, a(n) for n = 1..30 Sean A. Irvine, Illustration of initial terms R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971 (gives initial terms of this sequence) FORMULA G.f.: exp(sum(F(x^k) / k, k >= 1) where F(x) is the g.f. for A002831. - Sean A. Irvine, Sep 09 2014 MATHEMATICA permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m]; b[k_, q_] := If[OddQ[q], If[OddQ[k], 0, j = k/2; q^j (2 j)!/(j! 2^j)], Sum[ Binomial[k, 2 j] q^j (2 j)!/(j! 2^j), {j, 0, Quotient[k, 2]}]]; pm[v_] := Module[{p = Total[x^v]}, Product[b[Coefficient[p, x, i], i], {i, 1, Exponent[p, x]}]]; a[n_] := Module[{s = 0}, Do[s += permcount[p] pm[p]^3, {p, IntegerPartitions[2 n]}]; s/(2 n)!]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 30}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *) PROG (PARI) permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} b(k, q) = {if(q%2, if(k%2, 0, my(j=k/2); q^j*(2*j)!/(j!*2^j)), sum(j=0, k\2, binomial(k, 2*j)*q^j*(2*j)!/(j!*2^j)))} pm(v) = {my(p=sum(i=1, #v, x^v[i])); prod(i=1, poldegree(p), b(polcoeff(p, i), i))} a(n) = {my(s=0); forpart(p=2*n, s+=permcount(p)*pm(p)^3); s/(2*n)!} \\ Andrew Howroyd, Dec 14 2017 CROSSREFS Cf. A002831, A006712, A006713. Sequence in context: A179685 A286077 A286072 * A196015 A307953 A304762 Adjacent sequences:  A002827 A002828 A002829 * A002831 A002832 A002833 KEYWORD nonn AUTHOR EXTENSIONS a(7)-a(8) from Sean A. Irvine, Sep 08 2014 Terms a(9) and beyond from Andrew Howroyd, Dec 14 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 07:58 EDT 2019. Contains 328146 sequences. (Running on oeis4.)