This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002827 Unitary perfect numbers: usigma(n)-n = n. (Formerly M4268 N1783) 32
 6, 60, 90, 87360, 146361946186458562560000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS d is a unitary divisor of n if gcd(d,n/d)=1; usigma(n) is their sum (A034448). The prime factors of a unitary perfect number (A002827) are the Higgs primes (A057447). - Paul Muljadi, Oct 10 2005 It is not known if a(6) exists. - N. J. A. Sloane, Jul 27 2015 Frei proved that if there is a unitary perfect number that is not divisible by 3, then it is divisible by 2^m with m >= 144, it has at least 144 distinct odd prime factors, and it is larger than 10^440. - Amiram Eldar, Mar 05 2019 REFERENCES R. K. Guy, Unsolved Problems in Number Theory, Sect. B3. F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, p. 59, 1983. D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.45.1. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS H. A. M. Frei, Über unitar perfekte Zahlen, Elemente der Mathematik, Vol. 33, No. 4 (1978), pp. 95-96. A. V. Lelechenko, The Quest for the Generalized Perfect Numbers, in Theoretical and Applied Aspects of Cybernetics, TAAC 2014, Kiev. M. V. Subbarao, Letter to N. J. A. Sloane, Feb 18 1974 M. V. Subbarao, T. J. Cook, R. S. Newberry and J. M. Weber, On unitary perfect numbers, Delta, 3 (No. 1, 1972), 22-26. G. Villemin's Almanac of Numbers, Nombres Unitairement Parfaits C. R. Wall, Letter to P. Hagis, Jr., Jan 13 1972 C. R. Wall, The fifth unitary perfect number, Canad. Math. Bull., 18 (1975), 115-122. C. R. Wall, On the largest odd component of a unitary perfect number, Fib. Quart., 25 (1987), 312-316. Eric Weisstein's World of Mathematics, Unitary Perfect Number. Wikipedia, Unitary perfect number EXAMPLE Unitary divisors of 60 are 1,4,3,5,12,20,15,60, with sum 120 = 2*60. 146361946186458562560000 = 2^18 * 3 * 5^4 * 7 * 11 * 13 * 19 * 37 * 79 * 109 * 157 * 313. MATHEMATICA usnQ[n_]:=Total[Select[Divisors[n], GCD[#, n/#]==1&]]==2n; Select[Range[ 90000], usnQ] (* This will generate the first four terms of the sequence; it would take a very long time to attempt to generate the fifth term. *) (* Harvey P. Dale, Nov 14 2012 *) PROG (PARI) is(n)=sumdivmult(n, d, if(gcd(d, n/d)==1, d))==2*n \\ Charles R Greathouse IV, Aug 01 2016 CROSSREFS Cf. A034460, A034448, A057447. Subsequence of the following sequences: A003062, A290466 (seemingly), A293188, A327157, A327158. Gives the positions of ones in A327159. Sequence in context: A324707 A007357 A327158 * A324199 A137498 A250070 Adjacent sequences:  A002824 A002825 A002826 * A002828 A002829 A002830 KEYWORD nonn,nice,hard AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 02:10 EDT 2019. Contains 328244 sequences. (Running on oeis4.)