The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002778 Numbers whose square is a palindrome. (Formerly M0907 N0342) 72
 0, 1, 2, 3, 11, 22, 26, 101, 111, 121, 202, 212, 264, 307, 836, 1001, 1111, 2002, 2285, 2636, 10001, 10101, 10201, 11011, 11111, 11211, 20002, 20102, 22865, 24846, 30693, 100001, 101101, 110011, 111111, 200002, 798644, 1000001, 1001001 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS A002779(n) = a(n)^2; A136522(A000290(a(n))) = 1. - Reinhard Zumkeller, Oct 11 2011 See A016113 for the subset of numbers whose palindromic squares have an even number of digits. - M. F. Hasler, Jun 08 2014 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Hans Havermann (via Feng Yuan), T. D. Noe (from P. De Geest) [to 485], Table of n, a(n) for n = 1..1940 Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, On Polynomial Pairs of Integers, arXiv:1210.7593 [math.NT], 2012. - From N. J. A. Sloane, Nov 08 2012 Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, On Polynomial Pairs of Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.5. Patrick De Geest, Palindromic Squares Michael Keith, Classification and enumeration of palindromic squares, J. Rec. Math., 22 (No. 2, 1990), 124-132. [Annotated scanned copy] William Rex Marshall, Palindromic Squares Gustavus J. Simmons, Palindromic powers, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy] Gustavus J. Simmons, On palindromic squares of non-palindromic numbers, J. Rec. Math., 5 (No. 1, 1972), 11-19. [Annotated scanned copy] Eric Weisstein's World of Mathematics, Palindromic Number. Feng Yuan, Palindromic Square Numbers EXAMPLE 26^2 = 676, which is a palindrome, so 26 is in the sequence. 27^2 = 729, which is not a palindrome, so 27 is not in the sequence. MATHEMATICA palsquareQ[n_] := (n2 = IntegerDigits[n^2]; n2 == Reverse[n2]); A002778 = {}; Do[ If[palsquareQ[n], Print[n]; AppendTo[A002778, n]], {n, 0, 2 * 10^6}]; A002778 (* Jean-François Alcover, Dec 01 2011 *) Sqrt[#]&/@Select[Range[0, 12 * 10^5]^2, # == IntegerReverse[#] &] (* The program uses the IntegerReverse function from Mathematica version 10. - Harvey P. Dale, Mar 04 2016 *) Select[Range[0, 1001001], PalindromeQ[#^2] &] (* Michael De Vlieger, Dec 06 2017 *) PROG (Haskell) a002778 n = a002778_list !! (n-1) a002778_list = filter ((== 1) . a136522 . (^ 2)) [0..] -- Reinhard Zumkeller, Oct 11 2011 (PARI) is_A002778(n)=is_A002113(n^2) \\ M. F. Hasler, Jun 08 2014 (MAGMA) [n: n in [0..2*10^6] | Intseq(n^2) eq Reverse(Intseq(n^2))]; // Vincenzo Librandi, Apr 07 2015 (Python) from itertools import count, islice def A002778_gen(): # generator of terms     return filter(lambda k: (s:=str(k**2))[:(t:=(len(s)+1)//2)]==s[:-t-1:-1], count(0)) A002778_list = list(islice(A002778_gen(), 20)) # Chai Wah Wu, Jun 23 2022 CROSSREFS Cf. A002779, A002113, A016113, A136522, A000290. See A003166 for binary analog. For analogs in bases 2,3,4,5,etc. see A003166 onwards, A029984 onwards, and A263607 onwards. Sequence in context: A295958 A049083 A305719 * A028816 A316187 A215952 Adjacent sequences:  A002775 A002776 A002777 * A002779 A002780 A002781 KEYWORD base,nonn,nice,easy,changed AUTHOR EXTENSIONS More terms from Patrick De Geest STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 26 21:14 EDT 2022. Contains 354885 sequences. (Running on oeis4.)