login
A002625
Expansion of 1/((1-x)^3*(1-x^2)^2*(1-x^3)).
(Formerly M2726 N1093)
5
1, 3, 8, 17, 33, 58, 97, 153, 233, 342, 489, 681, 930, 1245, 1641, 2130, 2730, 3456, 4330, 5370, 6602, 8048, 9738, 11698, 13963, 16563, 19538, 22923, 26763, 31098, 35979, 41451, 47571, 54390, 61971, 70371, 79660, 89901, 101171, 113540, 127092, 141904, 158068, 175668, 194804, 215568
OFFSET
0,2
COMMENTS
Number of (integer) partitions of n into 3 sorts of 1's, 2 sorts of 2's, and 1 sort of 3's. - Joerg Arndt, May 17 2013
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. Fix and J. L. Hodges, Jr., Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312.
E. Fix and J. L. Hodges, Significance probabilities of the Wilcoxon test, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy]
Gerzson Keri and Patric R. J. Östergård, The Number of Inequivalent (2R+3,7)R Optimal Covering Codes, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.7.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = floor((n+1)*(135*(-1)^n + 6*n^4 + 144*n^3 + 1256*n^2 + 4744*n + 6785)/8640+1/2). - Tani Akinari, Oct 07 2012
MAPLE
A002625:=1/(z**2+z+1)/(z+1)**2/(z-1)**6; [Simon Plouffe in his 1992 dissertation.]
MATHEMATICA
CoefficientList[Series[1/((1-x)^3*(1-x^2)^2*(1-x^3)), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 25 2012 *)
LinearRecurrence[{3, -1, -4, 2, 2, 2, -4, -1, 3, -1}, {1, 3, 8, 17, 33, 58, 97, 153, 233, 342}, 50] (* Harvey P. Dale, Sep 24 2022 *)
PROG
(PARI) Vec(1/(1-x)^3/(1-x^2)^2/(1-x^3)+O(x^99)) \\ Charles R Greathouse IV, Apr 30 2012
CROSSREFS
Partial sums of A097701.
Sequence in context: A294417 A001580 A360848 * A027181 A130750 A281166
KEYWORD
nonn,easy
STATUS
approved