%I M0389 N0147 #24 Oct 16 2023 23:53:35
%S 1,1,1,2,2,17,1,91,16,1,1,105,4,55,1314,16,2,28
%N Number of nonisomorphic solutions to minimal independent dominating set on queens' graph Q(n).
%D W. Ahrens, Mathematische Unterhaltungen und Spiele, second edition (1910), Vol. 1, p. 301.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H P. B. Gibbons and J. A. Webb, <a href="https://ajc.maths.uq.edu.au/pdf/15/ocr-ajc-v15-p145.pdf">Some new results for the queens domination problem</a>, Australasian Journal of Combinatorics 15 (1997), pp. 145-160.
%H Matthew D. Kearse and Peter B. Gibbons, <a href="http://ajc.maths.uq.edu.au/pdf/23/ocr-ajc-v23-p253.pdf">Computational Methods and New Results for Chessboard Problems</a>, Australasian Journal of Combinatorics 23 (2001), 253-284.
%H M. A. Sainte-Laguë, <a href="https://eudml.org/doc/192551">Les Réseaux (ou Graphes)</a>, Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49.
%H M. A. Sainte-Laguë, <a href="/A002560/a002560.pdf">Les Réseaux (ou Graphes)</a>, Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49. [Incomplete annotated scan of title page and pages 18-51]
%Y See A002568 for the number of distinct solutions.
%Y A075324 gives number of queens required.
%K nonn,more
%O 1,4
%A _N. J. A. Sloane_
%E a(9) corrected by Peter Gibbons, May 30 2004