login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002567 Number of nonisomorphic solutions to minimal independent dominating set on queens' graph Q(n).
(Formerly M0389 N0147)
3
1, 1, 1, 2, 2, 17, 1, 91, 16, 1, 1, 105, 4, 55, 1314, 16, 2, 28 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

W. Ahrens, Mathematische Unterhaltungen und Spiele, second edition (1910), Vol. 1, p. 301.

P. B. Gibbons and J. A. Webb, Some new results for the queens domination problem, Australasian Journal of Combinatorics 15 (1997), pp. 145-160.

Matthew D. Kearse and Peter B. Gibbons, "Computational Methods and New Results for Chessboard Problems", Australasian Journal of Combinatorics 23 (2001), 253-284.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..18.

M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49.

M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49. [Incomplete annotated scan of title page and pages 18-51]

CROSSREFS

See A002568 for the number of distinct solutions.

A075324 gives number of queens required.

Sequence in context: A009804 A027607 A100680 * A238289 A206095 A222451

Adjacent sequences:  A002564 A002565 A002566 * A002568 A002569 A002570

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

a(9) corrected by Peter Gibbons, May 30 2004.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 07:48 EDT 2019. Contains 326143 sequences. (Running on oeis4.)