login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002505 Nearest integer to the n-th Gram point.
(Formerly M5052 N2185)
8
18, 23, 28, 32, 35, 39, 42, 46, 49, 52, 55, 58, 60, 63, 66, 68, 71, 74, 76, 79, 81, 84, 86, 88, 91, 93, 95, 98, 100, 102, 104, 107, 109, 111, 113, 115, 118, 120, 122, 124, 126 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Every integer greater than 3295 is in this sequence. - T. D. Noe, Aug 03 2007

Nearest integer to points t such that Re(zeta(1/2+i*t)) is not equal to zero and Im(zeta(1/2+i*t))=0. - Mats Granvik, May 14 2016

REFERENCES

C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.

A. Ivić, The Theory of Hardy's Z-Function, Cambridge University Press, 2013, pages 109-112.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..3000

Guilherme França and André LeClair, A theory for the zeros of Riemann Zeta and other L-functions, arXiv:1407.4358 [math.NT], 2014, formula (163) at page 47.

Mats Granvik Gram points computed by iterative formula

C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function, annotated scanned copy of page 58.

Eric Weisstein's World of Mathematics, Gram Point

FORMULA

a(n) ~ 2*Pi*n/log n. - Charles R Greathouse IV, Oct 23 2015

From Mats Granvik, May 16 2016: (Start)

a(n) = round(2*Pi*exp(1 + LambertW((8*n + 1)/(8*exp(1))))), Eric Weisstein's World of Mathematics.

a(n+1) = round(2*Pi*(n - 7/8)/LambertW((n - 7/8)/exp(1))), after Guilherme França, André LeClair formula (163) page 47.

(End)

For c = 0 the n-th Gram point x is the fixed point solution to the iterative formula:

x = 2*Pi*e^(LambertW (-((c - n + RiemannSiegelTheta (x)/Pi + (x*(-log (x) + 1 + log (2) + log (Pi)))/(2*Pi) + 2)/e)) +  1). - Mats Granvik, Jun 17 2017

MATHEMATICA

a[n_] := Round[ g /. FindRoot[ RiemannSiegelTheta[g] == Pi*n, {g, 2*Pi*Exp[1 + ProductLog[(8*n + 1)/(8*E)]]}]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 17 2012, after Eric W. Weisstein *)

PROG

(Sage)

a = lambda n: round(2*pi*(n - 7/8)/lambert_w((n - 7/8)/exp(1)))

print [a(n) for n in (1..41)] # Peter Luschny, May 19 2016

CROSSREFS

Cf. A273061. A114857 = 17.8455995..., A114858 = 23.1702827...

Sequence in context: A290172 A031407 A267826 * A182438 A050772 A086473

Adjacent sequences:  A002502 A002503 A002504 * A002506 A002507 A002508

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 04:37 EDT 2019. Contains 327995 sequences. (Running on oeis4.)