login
A002148
Smallest prime p==3 (mod 8) such that Q(sqrt(-p)) has class number 2n+1.
(Formerly M3164 N1282)
14
3, 59, 131, 251, 419, 659, 1019, 971, 1091, 2099, 1931, 1811, 3851, 3299, 2939, 3251, 4091, 4259, 8147, 5099, 9467, 6299, 6971, 8291, 8819, 14771, 22619, 9539, 13331, 18443, 11171, 16979, 12011, 13859, 16931, 17939, 28211, 19211, 24251, 20411
OFFSET
0,1
REFERENCES
D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MATHEMATICA
a=Table[0, {101}]; Do[If[PrimeQ[m], c=NumberFieldClassNumber[Sqrt[-m]]; If[c<102 && a[[c]]==0, a[[c]]=m]], {m, 3, 30000, 8}]; Table[a[[n]], {n, 1, 101, 2}]
CROSSREFS
Cf. A002143 (class numbers), A002149, A003173, A006203.
Sequence in context: A139874 A155032 A107212 * A290977 A200957 A057175
KEYWORD
nonn
EXTENSIONS
More terms from Robert G. Wilson v, Apr 17 2001
Edited by Dean Hickerson, Mar 17 2003
STATUS
approved