

A002143


Class numbers h(p) where p runs though the primes p == 3 (mod 4).
(Formerly M2266 N0896)


11



1, 1, 1, 1, 3, 3, 1, 5, 3, 1, 7, 5, 3, 5, 3, 5, 5, 3, 7, 1, 11, 5, 13, 9, 3, 7, 5, 15, 7, 13, 11, 3, 3, 19, 3, 5, 19, 9, 3, 17, 9, 21, 15, 5, 7, 7, 25, 7, 9, 3, 21, 5, 3, 9, 5, 7, 25, 13, 5, 13, 3, 23, 11, 5, 5, 31, 13, 5, 21, 15, 5, 7, 9, 7, 33, 7, 21, 3, 29, 3, 31, 19, 5, 11, 15, 27, 17, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

a(n) = h(A002145(n)).
Same as (1/p)*(sum of quadratic nonresidues mod p in (0,p)  sum of quadratic residues mod p in (0,p)), for prime p == 3 (mod 4) if p > 3. (See Davenport's book and the first Mathematica program.)  Jonathan Sondow, Oct 27 2011


REFERENCES

H. Davenport, Multiplicative Number Theory, Graduate Texts in Math. 74, 2nd ed., Springer, 1980, p. 51.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n=1..10000
Christian Aebi, Grant Cairns, Sums of Quadratic residues and nonresidues, arXiv:1512.00896 [math.NT], 2015.
Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, vol. 101, (2002), pp. 105114.
E. T. Ordman, Tables of the class number for negative prime discriminants, Deposited in Unpublished Mathematical Table file of Math. Comp. [Annotated scanned partial copy with notes]
E. T. Ordman, Tables of the class number for negative prime discriminants, Math. Comp., 23 (1969), 458.
N. Snyder, Lectures # 7: The Class Number Formula For Positive Definite Binary Quadratic Forms. [Background information on class numbers, link sent by V. S. Miller, Nov 22 2009]
Wikipedia, Class numbers of quadratic fields


FORMULA

h(p) = 1 + 2*sum(0 <= n <= (1/2)*sqrt(p/3)1, d(n^2+n+(p+1)/4, [2*n+1, sqrt(n^2+n+(p+1)/4)])) for prime p=3 mod 4, p>3. d(n, [a, b])=card{d: dn and a<d<b} for integer n and real a, b.  Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 19 2002
h(p) = (1/p)*sum(n=1..p1, n*(np)) if p > 3, where (np) = +/ 1 is the Legendre symbol.  Jonathan Sondow, Oct 27 2011
h(p) = (1/3)*sum(n=1..(p1)/2, (np)) or sum(n=1..(p1)/2, (np)) according as p == 3 or 7 (mod 8).  Jonathan Sondow, Feb 27 2012


EXAMPLE

E.g., a(4) = 1 is the class number of 19, the 4th prime == 3 mod 4.
a(5) = (1/23)*sum(n=1..22, n*(n23)) = (1/23)*(1 + 2 + 3 + 4  5 + 6  7 + 8 + 9  10  11 + 12 + 13  14  15 + 16  17 + 18  19  20  21  22) = 69/23 = 3.  Jonathan Sondow, Oct 27 2011


MATHEMATICA

Cases[ Table[ With[ {p = Prime[n]}, If[ Mod[p, 4] == 3, (1/p)*Sum[ a*JacobiSymbol[a, p], {a, 1, p  1}]]], {n, 1, 100}], _Integer] (* Jonathan Sondow, Oct 27 2011 *)
p = Prime[n]; If[Mod[p, 4] == 3, NumberFieldClassNumber[Sqrt[p]]] (* Jonathan Sondow, Feb 24 2012 *)


PROG

(PARI) forprime(p=3, 1e3, if(p%4==3, print1(qfbclassno(p)", "))) \\ Charles R Greathouse IV, May 08 2011


CROSSREFS

Cf. A002145 (primes p), A002146.
Sequence in context: A111408 A092674 A111945 * A039739 A160496 A105663
Adjacent sequences: A002140 A002141 A002142 * A002144 A002145 A002146


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 19 2002
Editorial comments from M. F. Hasler, Nov 22 2009


STATUS

approved



