The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002143 Class numbers h(-p) where p runs through the primes p == 3 (mod 4). (Formerly M2266 N0896) 14
 1, 1, 1, 1, 3, 3, 1, 5, 3, 1, 7, 5, 3, 5, 3, 5, 5, 3, 7, 1, 11, 5, 13, 9, 3, 7, 5, 15, 7, 13, 11, 3, 3, 19, 3, 5, 19, 9, 3, 17, 9, 21, 15, 5, 7, 7, 25, 7, 9, 3, 21, 5, 3, 9, 5, 7, 25, 13, 5, 13, 3, 23, 11, 5, 5, 31, 13, 5, 21, 15, 5, 7, 9, 7, 33, 7, 21, 3, 29, 3, 31, 19, 5, 11, 15, 27, 17, 13 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS a(n) = h(-A002145(n)). Same as (1/p)*(sum of quadratic nonresidues mod p in (0,p) - sum of quadratic residues mod p in (0,p)), for prime p == 3 (mod 4) if p > 3. (See Davenport's book and the first Mathematica program.) - Jonathan Sondow, Oct 27 2011 Conjecture: For any prime p > 3 with p == 3 (mod 8), we have 2*h(-p)*sqrt(p) = Sum_{k=1..(p-1)/2} csc(2*Pi*k^2/p). - Zhi-Wei Sun, Aug 06 2019 REFERENCES H. Davenport, Multiplicative Number Theory, Graduate Texts in Math. 74, 2nd ed., Springer, 1980, p. 51. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=1..10000 Christian Aebi, Grant Cairns, Sums of Quadratic residues and nonresidues, arXiv:1512.00896 [math.NT], 2015. Kevin A. Broughan, Restricted divisor sums, Acta Arithmetica, vol. 101, (2002), pp. 105-114. E. T. Ordman, Tables of the class number for negative prime discriminants, Deposited in Unpublished Mathematical Table file of Math. Comp. [Annotated scanned partial copy with notes] E. T. Ordman, Tables of the class number for negative prime discriminants, Math. Comp., 23 (1969), 458. A. Pacetti and F. Rodriguez Villegas, Computing weight two modular forms of level p^2, Math. Comp. 74 (2004), 1545-1557. See Table 1. N. Snyder, Lectures # 7: The Class Number Formula For Positive Definite Binary Quadratic Forms. [Background information on class numbers, link sent by V. S. Miller, Nov 22 2009] Wikipedia, Class numbers of quadratic fields FORMULA h(-p) = 1 + 2*sum(0 <= n <= (1/2)*sqrt(p/3)-1, d(n^2+n+(p+1)/4, [2*n+1, sqrt(n^2+n+(p+1)/4)])) for prime p=3 mod 4, p>3. d(n, [a, b])=card{d: d|n and a 3, where (n|p) = +/- 1 is the Legendre symbol. - Jonathan Sondow, Oct 27 2011 h(-p) = (1/3)*sum(n=1..(p-1)/2, (n|p)) or sum(n=1..(p-1)/2, (n|p)) according as p == 3 or 7 (mod 8). - Jonathan Sondow, Feb 27 2012 EXAMPLE E.g., a(4) = 1 is the class number of -19, the 4th prime == 3 mod 4. a(5) = -(1/23)*sum(n=1..22, n*(n|23)) = -(1/23)*(1 + 2 + 3 + 4 - 5 + 6 - 7 + 8 + 9 - 10 - 11 + 12 + 13 - 14 - 15 + 16 - 17 + 18 - 19 - 20 - 21 - 22) = 69/23 = 3. - Jonathan Sondow, Oct 27 2011 MATHEMATICA Cases[ Table[ With[ {p = Prime[n]}, If[ Mod[p, 4] == 3, -(1/p)*Sum[ a*JacobiSymbol[a, p], {a, 1, p - 1}]]], {n, 1, 100}], _Integer] (* Jonathan Sondow, Oct 27 2011 *) p = Prime[n]; If[Mod[p, 4] == 3, NumberFieldClassNumber[Sqrt[-p]]] (* Jonathan Sondow, Feb 24 2012 *) PROG (PARI) forprime(p=3, 1e3, if(p%4==3, print1(qfbclassno(-p)", "))) \\ Charles R Greathouse IV, May 08 2011 CROSSREFS Cf. A002145 (primes p), A002146, A101435. Sequence in context: A092674 A316366 A111945 * A039739 A160496 A105663 Adjacent sequences:  A002140 A002141 A002142 * A002144 A002145 A002146 KEYWORD nonn AUTHOR EXTENSIONS More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 19 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 4 12:06 EDT 2022. Contains 357239 sequences. (Running on oeis4.)