This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002122 a(n) = Sum_{t=0..n} g(t)*g(n-t) where g(t) = A002121(t). (Formerly M0273 N0096) 1
 1, 0, -2, 2, 3, -4, -1, 8, -1, -10, 9, 16, -18, -12, 42, 4, -58, 40, 82, -88, -54, 188, 18, -248, 151, 354, -338, -260, 760, 120, -1031, 574, 1460, -1324, -1076, 2948, 542, -3962, 2075, 5644, -4868, -4290, 11035, 2418, -14900, 7346, 21300, -17652, -16323, 40442, 9768, -54476, 25675, 78290, -62456 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Arises in studying the Goldbach conjecture. The last negative term appears to be a(485). - T. D. Noe, Dec 05 2006 REFERENCES P. A. MacMahon, Properties of prime numbers deduced from the calculus of symmetric functions, Proc. London Math. Soc., 23 (1923), 290-316. [Coll. Papers, Vol. II, pp. 354-382] [The sequence G_n] N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 P. A. MacMahon, Properties of prime numbers deduced from the calculus of symmetric functions, Proc. London Math. Soc., 23 (1923), 290-316. = Coll. Papers, II, pp. 354-380. FORMULA G.f.: 1/(1+Sum_{k>0} (-x)^prime(k))^2. PROG (Haskell) a002122 n = a002122_list !! n a002122_list = uncurry conv \$ splitAt 1 a002121_list where    conv xs (z:zs) = sum (zipWith (*) xs \$ reverse xs) : conv (z:xs) zs -- Reinhard Zumkeller, Mar 21 2014 CROSSREFS Cf. A002121. Sequence in context: A087824 A008951 A119473 * A105689 A187200 A117632 Adjacent sequences:  A002119 A002120 A002121 * A002123 A002124 A002125 KEYWORD sign AUTHOR EXTENSIONS Edited by Vladeta Jovovic, Mar 29 2003 Entry revised by N. J. A. Sloane, Dec 04 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 03:33 EDT 2019. Contains 326139 sequences. (Running on oeis4.)