login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001990 Let p be the n-th odd prime. a(n) is the least prime congruent to 5 modulo 8 such that Legendre(-a(n), q) = -Legendre(-2, q) for all odd primes q <= p.
(Formerly M3953 N1632)
2
5, 29, 29, 29, 29, 29, 29, 29, 23669, 23669, 23669, 23669, 23669, 23669, 1508789, 5025869, 9636461, 9636461, 9636461, 37989701, 37989701, 37989701, 37989701, 37989701, 240511301, 240511301 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers so far are all 5 mod 24. - Ralf Stephan, Jul 07 2003

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..26.

D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451.

D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451 [Annotated scanned copy]

PROG

(PARI) isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -kronecker(-2, q), return (0)); ); return (1); }

a(n) = {oddpn = prime(n+1); forprime(p=3, , if ((p%8) == 5, if (isok(p, oddpn), return (p)); ); ); } \\ Michel Marcus, Oct 18 2017

CROSSREFS

Cf. A001988.

Sequence in context: A057713 A124987 A002584 * A043062 A243012 A053244

Adjacent sequences:  A001987 A001988 A001989 * A001991 A001992 A001993

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Better name from Sean A. Irvine, Mar 06 2013

Name and offset corrected by Michel Marcus, Oct 18 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 09:55 EDT 2018. Contains 316211 sequences. (Running on oeis4.)