This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057713 Smallest prime divisor of Kummer numbers ( = primorials - 1). 6
 1, 5, 29, 11, 2309, 30029, 61, 53, 37, 79, 228737, 229, 304250263527209, 141269, 191, 87337, 27600124633, 1193, 163, 260681003321, 313, 163, 139, 23768741896345550770650537601358309, 66683, 2990092035859, 15649, 17515703, 719, 295201, 15098753, 10172884549, 20962699238647, 4871, 673, 311, 1409, 1291, 331, 1450184819, 23497, 711427, 521, 673, 519577, 1372062943, 56543, 811, 182309, 53077, 641, 349, 389 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors). [Annotated scanned copy] R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012 - N. J. A. Sloane, Jun 13 2012 Hisanori Mishima, Factorizations of many number sequences R. G. Wilson v, Explicit factorizations EXAMPLE 6th term in the sequence corresponds to 7th primorial=510510 and 510509=61.8369, so a(7)=61 MATHEMATICA Map[If[PrimeQ@ #, #, FactorInteger[#][[1, 1]]] &, FoldList[#1 #2 &, Prime@ Range@ 36] - 1] (* Michael De Vlieger, Feb 18 2017 *) CROSSREFS Cf. A002110, A057588, A002585, A006862, A002584. Sequence in context: A033503 A181616 A057206 * A124987 A002584 A001990 Adjacent sequences:  A057710 A057711 A057712 * A057714 A057715 A057716 KEYWORD nonn AUTHOR Labos Elemer, Oct 25 2000 EXTENSIONS More terms from Klaus Brockhaus, Larry Reeves (larryr(AT)acm.org) and Robert G. Wilson v, Apr 02 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 00:47 EDT 2019. Contains 324223 sequences. (Running on oeis4.)