OFFSET
6,2
COMMENTS
In general, for column k of A047874 is a_k(n) ~ (Product_{j=0..k-1} j!) * k^(2*n + k^2/2) / (2^((k-1)*(k+2)/2) * Pi^((k-1)/2) * n^((k^2-1)/2)) [Regev, 1981]. - Vaclav Kotesovec, Mar 18 2014
REFERENCES
J. M. Hammersley, A few seedings of research, in Proc. Sixth Berkeley Sympos. Math. Stat. and Prob., ed. L. M. le Cam et al., Univ. Calif. Press, 1972, Vol. I, pp. 345-394.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 6..175 (first 100 terms from Alois P. Heinz)
R. M. Baer and P. Brock, Natural sorting over permutation spaces, Math. Comp. 22 1968 385-410.
A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, Adv. in Math. 41 (1981), 115-136.
FORMULA
a(n) ~ 5 * 2^(2*n+6) * 3^(2*n+21) / (Pi^(5/2) * n^(35/2)). - Vaclav Kotesovec, Mar 18 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Alois P. Heinz, Jul 01 2012
Name of the sequence clarified by Vaclav Kotesovec, Mar 18 2014
STATUS
approved