login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047874 Triangle of numbers T(n,k) = number of permutations of (1,2,...,n) with longest increasing subsequence of length k (1<=k<=n). 22
1, 1, 1, 1, 4, 1, 1, 13, 9, 1, 1, 41, 61, 16, 1, 1, 131, 381, 181, 25, 1, 1, 428, 2332, 1821, 421, 36, 1, 1, 1429, 14337, 17557, 6105, 841, 49, 1, 1, 4861, 89497, 167449, 83029, 16465, 1513, 64, 1, 1, 16795, 569794, 1604098, 1100902, 296326, 38281, 2521, 81, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Mirror image of triangle in A126065.

T(n,m) is also the sum of squares of n!/(product of hook lengths), summed over the partitions of n in exactly m parts (Robinson-Schensted correspondence). - Wouter Meeussen, Sep 16 2010

Table I "Distribution of L_n" on p. 98 of the Pilpel reference. - Joerg Arndt, Apr 13 2013

In general, for column k is a(n) ~ product(j!, j=0..k-1) * k^(2*n+k^2/2) / (2^((k-1)*(k+2)/2) * Pi^((k-1)/2) * n^((k^2-1)/2)) (result due to Regev) . - Vaclav Kotesovec, Mar 18 2014

LINKS

Alois P. Heinz, Rows n = 1..60, flattened

P. Diaconis, Group Representations in Probability and Statistics, IMS, 1988; see p. 112.

FindStat - Combinatorial Statistic Finder, The length of the longest increasing subsequence of the permutation.

Gessel, Ira M., Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.

J. M. Hammersley, A few seedings of research, in Proc. Sixth Berkeley Sympos. Math. Stat. and Prob., ed. L. M. le Cam et al., Univ. Calif. Press, 1972, Vol. I, pp. 345-394.

Guo-Niu Han, A promenade in the garden of hook length formulas, Slides, 61st SLC Curia, Portugal - September 22, 2008. [From Wouter Meeussen, Sep 16 2010]

Hunt, J. and Szymanski, T., A fast algorithm for computing longest common subsequences, Commun. ACM, 20 (1977), 350-353.

E. Irurozki, B. Calvo, J. A. Lozano, Sampling and learning the Mallows model under the Ulam distance, 2014

S. Pilpel, Descending subsequences of random permutations, J. Combin. Theory, A 53 (1990), 96-116.

A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, Adv. in Math. 41 (1981), 115-136.

C. Schensted, Longest increasing and decreasing subsequences. Canadian J. Math. 13 (1961), 179-191.

Richard P. Stanley, Increasing and Decreasing Subsequences of Permutations and Their Variants, arXiv:math/0512035 [math.CO], 2005.

Wikipedia, Longest increasing subsequence problem

EXAMPLE

T(3,2) = 4 because 132, 213, 231, 312 have longest increasing subsequences of length 2.

Triangle T(n,k) begins:

1;

1,   1;

1,   4,    1;

1,  13,    9,    1;

1,  41,   61,   16,   1;

1, 131,  381,  181,  25,  1;

1, 428, 2332, 1821, 421, 36,  1;

MAPLE

h:= proc(l) local n; n:= nops(l); add(i, i=l)! /mul(mul(1+l[i]-j

      +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:

g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,

                add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):

T:= n-> seq(g(n-k, min(n-k, k), [k]), k=1..n):

seq(T(n), n=1..12);  # Alois P. Heinz, Jul 05 2012

MATHEMATICA

Table[Total[NumberOfTableaux[#]^2&/@ IntegerPartitions[n, {k}]], {n, 7}, {k, n}] (* Wouter Meeussen, Sep 16 2010, revised Nov 19 2013 *)

h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Table[g[n-k, Min[n-k, k], {k}], {k, 1, n}]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-Fran├žois Alcover, Mar 06 2014, after Alois P. Heinz *)

CROSSREFS

Cf. A047887 and A047888.

Columns k=1-10 give: A000012, A001453, A001454, A001455, A001456, A001457, A001458, A239432, A245665, A245666.

Row sums give A000142.

Cf. A047884. - Wouter Meeussen, Sep 16 2010

Cf. A224652 (Table II "Distribution of F_n" on p. 99 of the Pilpel reference).

Cf. A245667.

T(2n,n) gives A267433.

Sequence in context: A262494 A039755 A247502 * A080248 A139382 A157180

Adjacent sequences:  A047871 A047872 A047873 * A047875 A047876 A047877

KEYWORD

nonn,easy,nice,tabl

AUTHOR

Eric Rains (rains(AT)caltech.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 02:43 EST 2018. Contains 299473 sequences. (Running on oeis4.)