login
A001384
Number of n-node trees of height at most 4.
(Formerly M1172 N0449)
4
1, 1, 1, 2, 4, 9, 19, 42, 89, 191, 402, 847, 1763, 3667, 7564, 15564, 31851, 64987, 132031, 267471, 539949, 1087004, 2181796, 4367927, 8721533, 17372967, 34524291, 68456755, 135446896, 267444085, 527027186, 1036591718, 2035083599
OFFSET
0,4
COMMENTS
a(n+1) is also the number of n-vertex graphs that do not contain a P_4, C_4, or K_5 as induced subgraph (K_5-free trivially perfect graphs, cf. A123467). - Falk Hüffner, Jan 10 2016
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
Take Euler transform of A001383 and shift right. (Christian G. Bower)
MAPLE
For Maple program see link in A000235.
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: A000041:= etr(n->1): b1:= etr(k-> A000041(k-1)): A001383:= n->`if`(n=0, 1, b1(n-1)): b2:= etr(A001383): a:= n->`if`(n=0, 1, b2(n-1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
Prepend[Nest[CoefficientList[Series[Product[1/(1-x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 40}], x]&, {1}, 4], 1] (* Geoffrey Critzer, Aug 01 2013 *)
CROSSREFS
See A001383 for details.
Sequence in context: A305380 A275862 A036622 * A089941 A307464 A127681
KEYWORD
nonn
STATUS
approved