OFFSET
0,4
COMMENTS
a(n+1) is also the number of n-vertex graphs that do not contain a P_4, C_4, or K_5 as induced subgraph (K_5-free trivially perfect graphs, cf. A123467). - Falk Hüffner, Jan 10 2016
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Table of n, a(n) for n=0..200
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 63
J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
N. J. A. Sloane, Transforms
FORMULA
Take Euler transform of A001383 and shift right. (Christian G. Bower)
MAPLE
For Maple program see link in A000235.
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: A000041:= etr(n->1): b1:= etr(k-> A000041(k-1)): A001383:= n->`if`(n=0, 1, b1(n-1)): b2:= etr(A001383): a:= n->`if`(n=0, 1, b2(n-1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
Prepend[Nest[CoefficientList[Series[Product[1/(1-x^i)^#[[i]], {i, 1, Length[#]}], {x, 0, 40}], x]&, {1}, 4], 1] (* Geoffrey Critzer, Aug 01 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved