login
A001116
Maximal kissing number of an n-dimensional lattice.
(Formerly M1585 N0617)
7
0, 2, 6, 12, 24, 40, 72, 126, 240, 272
OFFSET
0,2
COMMENTS
a(9) = 272 was determined by Watson (1971). a(10) is probably 336.
Lower bounds for the next 4 terms are 336, 438, 756, 918.
From Nathan L. Skirrow, Jun 04 2023: (Start)
Trivial upper bounds given by A257479 are 553, 869, 1356, 2066.
a(n) coincides with A257479(n) when a lattice achieves the non-lattice-constrained kissing number, for a(0)=0, a(1)=2, a(2)=6 (A_2), a(3)=12 (A_3), a(4)=24 (D_4), a(8)=240 (E_8) and a(24)=196560 (Leech). A002336(n) agrees with a(n) for all n<=9 (and equality is unknown thereafter), and A028923(n)=a(n) iff n<=6. (End)
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 3rd. ed., 1993. p. 15.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Henry Cohn and Anqi Li, Improved kissing numbers in seventeen through twenty-one dimensions, arXiv:2411.04916 [math.MG], 2024.
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 31-62.
J. Leech and N. J. A. Sloane, New sphere packings in dimensions 9-15, Bull. Amer. Math. Soc., 76 (1970), 1006-1010.
G. Nebe and N. J. A. Sloane, Table of highest kissing numbers known
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
N. J. A. Sloane, Seven Staggering Sequences.
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 21.
G. L. Watson, The number of minimum points of a positive quadratic form, Dissertationes Math., 84 (1971), 42 pp.
Eric Weisstein's World of Mathematics, Kissing Number.
FORMULA
A002336(n),A028923(n) <= a(n) <= A257479(n).
EXAMPLE
In three dimensions, each sphere in the face-centered cubic lattice D_3 touches 12 others, and the kissing number in any other three-dimensional lattice is less than 12.
CROSSREFS
KEYWORD
nonn,nice,hard,more,changed
STATUS
approved