login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001088 Product of totient function: a(n) = Product_{k=1..n} phi(k) (cf. A000010). 22
1, 1, 2, 4, 16, 32, 192, 768, 4608, 18432, 184320, 737280, 8847360, 53084160, 424673280, 3397386240, 54358179840, 326149079040, 5870683422720, 46965467381760, 563585608581120, 5635856085811200, 123988833887846400, 991910671102771200, 19838213422055424000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j) for 1 <= i,j <= n [Smith and Mansion]. - Avi Peretz (njk(AT)netvision.net.il), Mar 20 2001

The matrix M(i,j) = gcd(i,j) is sequence A003989. - Michael Somos, Jun 25 2012

REFERENCES

E. C. Catalan, Theoreme de MM. Smith et Mansion, Nouvelle correspondance mathematique, 4 (1878) 103-112.

D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 598.

M. Petkovsek et al., A=B, Peters, 1996, p. 21.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..100

Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49.

Warren P. Johnson, An LDU Factorization in Elementary Number Theory, Mathematics Magazine, 76 (2003), 392-394.

P. Mansion, On an Arithmetical Theorem of Professor Smith's, Messenger of Mathematics, (1878), pp. 81-82.

Mathoverflow, Asymptotics of product of Euler's totient function, 2016.

H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7 (1875-1876), pp. 208-212.

Eric Weisstein's World of Mathematics, Le Paige's Theorem

Index to divisibility sequences

FORMULA

a(n) = phi(1) * phi(2) * ... * phi(n).

EXAMPLE

a(2) = 1 because the matrix M is: [1,1; 1,2] and det(A) = 1.

MAPLE

with(numtheory, phi); A001088 := proc(n) local i; mul(phi(i), i=1..n); end;

MATHEMATICA

A001088[n_]:=Times@@EulerPhi/@Range[n]; Table[A001088[n], {n, 30}] (* Enrique Pérez Herrero, Sep 19 2010 *)

Rest[FoldList[Times, 1, EulerPhi[Range[30]]]] (* Harvey P. Dale, Dec 09 2011 *)

PROG

(Haskell)

a001088 n = a001088_list !! (n-1)

a001088_list = scanl1 (*) a000010_list

-- Reinhard Zumkeller, Mar 04 2012

(PARI) a(n)=prod(k=1, n, eulerphi(k)) \\ Charles R Greathouse IV, Mar 04 2012

CROSSREFS

Cf. A000010, A060238, A060239, A059381, A059382, A059383, A059384, A002088.

Cf. A003989.

Sequence in context: A269758 A094384 A053038 * A101926 A087965 A074411

Adjacent sequences:  A001085 A001086 A001087 * A001089 A001090 A001091

KEYWORD

nonn,nice,easy

AUTHOR

Simon Plouffe

EXTENSIONS

Catalan reference from Philippe Deléham, Dec 22 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 23:16 EST 2016. Contains 278993 sequences.