OFFSET
0,4
COMMENTS
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j) for 1 <= i,j <= n [Smith and Mansion]. - Avi Peretz (njk(AT)netvision.net.il), Mar 20 2001
The matrix M(i,j) = gcd(i,j) is sequence A003989. - Michael Somos, Jun 25 2012
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 598.
M. Petkovsek et al., A=B, Peters, 1996, p. 21.
LINKS
Antoine Mathys, Table of n, a(n) for n = 0..496 (first 100 terms by T. D. Noe)
Antal Bege, Hadamard product of GCD matrices, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49.
E. C. Catalan, Théorème de MM. Smith et Mansion, Nouvelle correspondance mathématique, 4 (1878) 103-112. [Philippe Deléham, Dec 22 2003]
Warren P. Johnson, An LDU Factorization in Elementary Number Theory, Mathematics Magazine, 76 (2003), 392-394.
P. Mansion, On an Arithmetical Theorem of Professor Smith's, Messenger of Mathematics, (1878), pp. 81-82.
Mathoverflow, Asymptotics of product of Euler's totient function, 2016.
H. J. S. Smith, On the value of a certain arithmetical determinant, Proc. London Math. Soc. 7 (1875-1876), pp. 208-212.
Eric Weisstein's World of Mathematics, Le Paige's Theorem
FORMULA
a(n) = phi(1) * phi(2) * ... * phi(n).
Limit_{n->infinity} a(n)^(1/n) / n = exp(-1) * A124175 = 0.205963050288186353879675428232497466485878059342058515016427881513657493... (see Mathoverflow link). - Vaclav Kotesovec, Jun 09 2021
EXAMPLE
a(2) = 1 because the matrix M is: [1,1; 1,2] and det(A) = 1.
MAPLE
MATHEMATICA
A001088[n_]:=Times@@EulerPhi/@Range[n]; Table[A001088[n], {n, 30}] (* Enrique Pérez Herrero, Sep 19 2010 *)
Rest[FoldList[Times, 1, EulerPhi[Range[30]]]] (* Harvey P. Dale, Dec 09 2011 *)
PROG
(Haskell)
a001088 n = a001088_list !! (n-1)
a001088_list = scanl1 (*) a000010_list
-- Reinhard Zumkeller, Mar 04 2012
(PARI) a(n)=prod(k=1, n, eulerphi(k)) \\ Charles R Greathouse IV, Mar 04 2012
(GAP) List([1..30], n->Product([1..n], i->Phi(i))); # Muniru A Asiru, Jul 31 2018
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jul 19 2023
STATUS
approved