login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000651
Running time of Takeuchi function.
2
0, 1, 4, 14, 53, 223, 1034, 5221, 28437, 165859, 1029803, 6772850, 46983238, 342509396, 2615606677, 20865444825, 173446634597, 1499111445237, 13445550920288, 124919896067530, 1200320663197275, 11910845573790488
OFFSET
0,3
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.8, p. 321.
D. E. Knuth, personal communication.
V. Lifschitz, editor, Artificial intelligence and mathematical theory of computation. Papers in honor of John McCarthy. Academic Press, Inc., Boston, MA, 1991. See p. 215.
T. Prellberg, On the asymptotics of Takeuchi numbers, Symbolic computation, number theory, special functions, physics and combinatorics, Kluwer Acad. Publ., Dordrecht, 2001, pp. 231-242. MR 2002m:11016.
LINKS
Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
T. Prellberg, On the Asymptotics of Takeuchi Numbers, arXiv:math/0005008 [math.CO], 2000.
Eric Weisstein's World of Mathematics, Takeuchi Number.
FORMULA
G.f. A(z) satisfies A(z-z^2)/z - A(z) = 1/(1-z) + z/(1-z+z^2). (Prellberg).
Asymptotic growth: a(n) ~ C_T*B(n)*exp(1/2*W(n)^2), where B(n) are the Bell numbers, W(n) the Lambert W function and C_T = 2.2394331040...(Prellberg).
MATHEMATICA
a[n_] := a[n] = If[n < 1, 0, Sum[ (2*k)!/k!/(k+1)!, {k, 1, n}] + Sum[ (2*Binomial[n+k-1, k] - Binomial[n+k, k])*a[n-1-k], {k, 0, n-2}]]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Mar 11 2013, after Pari *)
PROG
(PARI) a(n)=if(n<1, 0, sum(k=1, n, (2*k)!/k!/(k+1)!)+sum(k=0, n-2, (2*binomial(n+k-1, k)-binomial(n+k, k))*a(n-1-k)))
CROSSREFS
Cf. A143307.
Sequence in context: A112872 A162482 A308555 * A192247 A118896 A145211
KEYWORD
nonn,changed
EXTENSIONS
Typo in formula corrected by Vaclav Kotesovec, Sep 16 2013
STATUS
approved