login
A192247
1-sequence of reduction of tetrahedral number sequence by x^2 -> x+1.
2
0, 4, 14, 54, 159, 439, 1111, 2671, 6136, 13616, 29346, 61742, 127262, 257742, 514102, 1011862, 1968265, 3788845, 7225565, 13664305, 25645120, 47799824, 88535124, 163043324, 298669724, 544451624, 988021646, 1785478726, 3214039171
OFFSET
1,2
COMMENTS
See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".
FORMULA
Empirical G.f.: x^2*(2-x)*(2-2*x+3*x^2)/(1-x)/(1-x-x^2)^4. [Colin Barker, Feb 11 2012]
MATHEMATICA
c[n_] := n (n + 1) (n + 2)/6; (* tetrahedral numbers, A000292 *)
Table[c[n], {n, 1, 15}]
q[x_] := x + 1;
p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[
Last[Most[
FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192246 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192247 *)
(* by Peter J. C. Moses, Jun 26 2011 *)
CROSSREFS
Sequence in context: A162482 A308555 A000651 * A118896 A145211 A060898
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 27 2011
STATUS
approved