%I #22 Jan 09 2017 04:40:02
%S 6,6,8,10,12,13,14,14,17,21,22,24
%N Size of second largest n-arc in PG(2,q), where q runs through the primes and prime powers >= 7.
%C The Davydov et al. reference arXiv:10004.2817 has data sufficient for a b-file. - _Jonathan Vos Post_, Apr 18 2010
%C The terms run through indices q=A000961(i), i>=6. - _R. J. Mathar_, Jan 09 2017
%H Alexander A. Davydov, Giorgio Faina, Stefano Marcugini, Fernanda Pambianco, <a href="http://arxiv.org/abs/1004.2817">New sizes of complete arcs in PG(2,q)</a>, arXiv:1004.2817 [math.CO], April 16, 2010.
%H Alexander A. Davydov, Giorgio Faina, Stefano Marcugini, Fernanda Pambianco, <a href="http://dx.doi.org/10.1007/s00022-009-0009-3">On sizes of complete caps in projective spaced PG(n,q) and arcs in planes PG(2,q)</a>, J. Geom. 94 (1) (2009) 31-58.
%H J. W. P. Hirschfeld, <a href="http://dx.doi.org/10.1016/S0012-365X(96)00330-5">Complete arcs</a>, Discr. Math., 174 (1997), 177-184.
%H J. W. P. Hirschfeld and L. Storme, <a href="https://cage.ugent.be/~ls/max2000finalprocfilejames.pdf">The packing problem in statistics, coding theory and finite projective spaces</a>, J. Statist. Plann. Inference 72 (1998), no. 1-2, 355-380.
%H G. Keri, <a href="http://dx.doi.org/10.1002/jcd.20091">Types of superregular matrices and the number of n-arcs and complete n-arcs in PG(r,q)</a>, Journal of Combinatorial Designs, Vol. 14 (2006), pp. 363-390.
%e m'(31)=22 because there are no complete n-arcs in PG(2,31) for 23<=n<=31.
%Y Cf. A000510.
%Y Cf. A000961.
%K nonn,hard,more,nice
%O 1,1
%A J. W. P. Hirschfeld [ jwph(AT)sussex.ac.uk ]
%E Definition clarified by G. Keri (keri(AT)sztaki.hu), Jan 03 2008