login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000509 Size of second largest n-arc in PG(2,q), where q runs through the primes and prime powers >= 7. 1
6, 6, 8, 10, 12, 13, 14, 14, 17, 21, 22, 24 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The Davydov et al. reference arXiv:10004.2817 has data sufficient for a b-file. - Jonathan Vos Post, Apr 18 2010

The terms run through indices q=A000961(i), i>=6. - R. J. Mathar, Jan 09 2017

LINKS

Table of n, a(n) for n=1..12.

Alexander A. Davydov, Giorgio Faina, Stefano Marcugini, Fernanda Pambianco, New sizes of complete arcs in PG(2,q), arXiv:1004.2817 [math.CO], April 16, 2010.

Alexander A. Davydov, Giorgio Faina, Stefano Marcugini, Fernanda Pambianco, On sizes of complete caps in projective spaced PG(n,q) and arcs in planes PG(2,q), J. Geom. 94 (1) (2009) 31-58.

J. W. P. Hirschfeld, Complete arcs, Discr. Math., 174 (1997), 177-184.

J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces, J. Statist. Plann. Inference 72 (1998), no. 1-2, 355-380.

G. Keri, Types of superregular matrices and the number of n-arcs and complete n-arcs in PG(r,q), Journal of Combinatorial Designs, Vol. 14 (2006), pp. 363-390.

EXAMPLE

m'(31)=22 because there are no complete n-arcs in PG(2,31) for 23<=n<=31.

CROSSREFS

Cf. A000510.

Cf. A000961.

Sequence in context: A322292 A195707 A175217 * A160257 A315830 A183042

Adjacent sequences:  A000506 A000507 A000508 * A000510 A000511 A000512

KEYWORD

nonn,hard,more,nice

AUTHOR

J. W. P. Hirschfeld [ jwph(AT)sussex.ac.uk ]

EXTENSIONS

Definition clarified by G. Keri (keri(AT)sztaki.hu), Jan 03 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 06:40 EST 2019. Contains 320371 sequences. (Running on oeis4.)