OFFSET
1,2
COMMENTS
a(2n-1) is also the sum of the numbers of standard Young tableaux of size 2n+1 and of shapes (k+3,k+2,2^{n-2-k}), 0 <= k <= n-2. - Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 10 2010
REFERENCES
Amitai Regev, Preprint. [From Amitai Regev (amitai.regev(AT)weizmann.ac.il), Mar 10 2010]
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..800
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
Anatol N. Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 034, 56 p. (2016).
W. T. Tutte, A census of Hamiltonian polygons, Canad. J. Math., 14 (1962), 402-417.
W. T. Tutte, On the enumeration of four-colored maps, SIAM J. Appl. Math., 17 (1969), 454-460.
FORMULA
G.f.: (with offset 0) 3F2( [1, 3/2, 5/2], [3, 4], 16*x) = (1 - 2*x - 2F1( [-1/2, 1/2], [2], 16*x) ) / (4*x^2). - Olivier Gérard, Feb 16 2011
a(n)*(n+2) = A000891(n). - Gary W. Adamson, Apr 08 2011
D-finite with recurrence (n+2)*(n+1)*a(n)-4*(2*n-1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 03 2013
From Ilya Gutkovskiy, Feb 01 2017: (Start)
E.g.f.: (1/2)*(2F2(1/2,3/2; 2,3; 16*x) - 1).
a(n) ~ 2^(4*n+1)/(Pi*n^3). (End)
From Peter Bala, Feb 22 2023: (Start)
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 3)/(i + j - 1).
a(n) = (2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 3)/(i + j) for n >= 1.
Cf. A003645. (End)
MAPLE
MATHEMATICA
CoefficientList[ Series[1 + (HypergeometricPFQ[{1, 3/2, 5/2}, {3, 4}, 16 x] - 1), {x, 0, 17}], x]
Table[(2*n)!*(2*n+2)!/(2*n!*(n+1)!^2*(n+2)!), {n, 30}] (* Vincenzo Librandi, Mar 25 2012 *)
CROSSREFS
KEYWORD
easy,nonn,nice
AUTHOR
EXTENSIONS
Better definition from Michael Albert, Oct 24 2008
STATUS
approved