OFFSET
0,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Peter Luschny, Table of n, a(n) for n = 0..250
Daniel Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
Daniel Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699.
Daniel Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 690. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Tangent Number.
FORMULA
a(n) = 2*A002439(n). - N. J. A. Sloane, Nov 06 2009
E.g.f.: (2*sin(t))/(2*cos(2*t) - 1), odd terms only. - Peter Luschny, Oct 17 2020
Alternative form for e.g.f.: a(n) = (2*n+1)!*[x^(2*n)](sqrt(3)/(6*x))*(sec(x + Pi/3) + sec(x + 2*Pi/3)). - Peter Bala, Nov 16 2020
a(n) = (-1)^(n+1)*6^(2*n+1)*euler(2*n+1, 1/6). - Peter Luschny, Nov 26 2020
MAPLE
gf := (2*sin(t))/(2*cos(2*t) - 1): ser := series(gf, t, 26):
seq((2*n+1)!*coeff(ser, t, 2*n+1), n=0..23); # Peter Luschny, Oct 17 2020
a := n -> (-1)^n*(-6)^(2*n+1)*euler(2*n+1, 1/6):
seq(a(n), n = 0..13); # Peter Luschny, Nov 26 2020
MATHEMATICA
(* Formulas from D. Shanks, see link, p. 690. *)
L[ a_, s_, t_:10000 ] := Plus@@Table[ N[ JacobiSymbol[ -a, 2k+1 ](2k+1)^(-s), 30 ], {k, 0, t} ]; d[ a_, n_, t_:10000 ] := (2n-1)!/Sqrt[ a ](2a/Pi)^(2n)L[ -a, 2n, t ] (* Eric W. Weisstein, Aug 30 2001 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Eric W. Weisstein, Aug 30 2001
Offset set to 0 by Peter Luschny, Nov 26 2020
STATUS
approved