login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000191
Generalized tangent numbers d(3, n).
(Formerly M2166 N0864)
14
2, 46, 3362, 515086, 135274562, 54276473326, 30884386347362, 23657073914466766, 23471059057478981762, 29279357851856595135406, 44855282210826271011257762, 82787899853638102222862479246, 181184428895772987376073015175362, 463938847087789978515380344866258286
OFFSET
0,1
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
Daniel Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699.
Daniel Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 690. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Tangent Number.
FORMULA
a(n) = 2*A002439(n). - N. J. A. Sloane, Nov 06 2009
E.g.f.: (2*sin(t))/(2*cos(2*t) - 1), odd terms only. - Peter Luschny, Oct 17 2020
Alternative form for e.g.f.: a(n) = (2*n+1)!*[x^(2*n)](sqrt(3)/(6*x))*(sec(x + Pi/3) + sec(x + 2*Pi/3)). - Peter Bala, Nov 16 2020
a(n) = (-1)^(n+1)*6^(2*n+1)*euler(2*n+1, 1/6). - Peter Luschny, Nov 26 2020
MAPLE
gf := (2*sin(t))/(2*cos(2*t) - 1): ser := series(gf, t, 26):
seq((2*n+1)!*coeff(ser, t, 2*n+1), n=0..23); # Peter Luschny, Oct 17 2020
a := n -> (-1)^n*(-6)^(2*n+1)*euler(2*n+1, 1/6):
seq(a(n), n = 0..13); # Peter Luschny, Nov 26 2020
MATHEMATICA
(* Formulas from D. Shanks, see link, p. 690. *)
L[ a_, s_, t_:10000 ] := Plus@@Table[ N[ JacobiSymbol[ -a, 2k+1 ](2k+1)^(-s), 30 ], {k, 0, t} ]; d[ a_, n_, t_:10000 ] := (2n-1)!/Sqrt[ a ](2a/Pi)^(2n)L[ -a, 2n, t ] (* Eric W. Weisstein, Aug 30 2001 *)
CROSSREFS
Cf. A000436, A007289, overview in A349264.
Sequence in context: A173586 A074041 A277554 * A000192 A196197 A273380
KEYWORD
nonn,easy
EXTENSIONS
More terms from Eric W. Weisstein, Aug 30 2001
Offset set to 0 by Peter Luschny, Nov 26 2020
STATUS
approved