This site is supported by donations to The OEIS Foundation.
Lucas–Lehmer primality test
From OeisWiki
(Redirected from Lucas-Lehmer primality test)
The Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers. The test was originally developed by Édouard Lucas in 1856,[1] and subsequently improved by Lucas in 1878 and D. H. Lehmer in the 1930s.
Lucas–Lehmer primality test
The Lucas–Lehmer test works as follows. LetMp = 2 p − 1 |
p |
p |
Mp |
{si}i ≥ 0 |
-
s0 = 4; -
si = (si − 1 ) 2 − 2, i ≥ 1.
a (0) = 4 |
n > 0, a (n) = (a (n − 1)) 2 − 2 |
- {4, 14, 194, 37634, 1416317954, 2005956546822746114, 4023861667741036022825635656102100994, 16191462721115671781777559070120513664958590125499158514329308740975788034, ...}
Mp |
-
sp − 2 ≡ 0 (mod Mp ).
sp − 2 mod Mp |
p |
s1 = 4 |
sp − 1 mod Mp |
// Determine if M_p = 2^p − 1 is prime, where p is an odd prime. Lucas–Lehmer(p) var s = 4 var M = 2^p − 1 repeat p − 2 times: s = (s^2 − 2) mod M if s = 0 return PRIME else return COMPOSITEBy performing the
mod M
at each iteration, we ensure that all intermediate results are at most p |
Residues of the Lucas–Lehmer primality test
In the table,M ( pk ) = 2 pk − 1 |
k |
pk |
k |
|
|
|
Residues
|
A-number | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 Prime ![]() 1 × 2 + 1 |
2 being even, the Lucas–Lehmer primality test can’ t be used! | ||||||||
2 | 3 | 7 Prime ![]() 2 × 3 + 1 |
{4, 0}
|
||||||||
3 | 5 | 31 Prime ![]() 6 × 5 + 1 |
{4, 14, 8, 0}
|
A?????? | |||||||
4 | 7 | 127 Prime ![]() 18 × 7 + 1 |
{4, 14, 67, 42, 111, 0}
|
A129219 | |||||||
5 | 11 | 2047 Not prime ![]() 23 × 89 (2 × 11 + 1) × (8 × 11 + 1) |
{4, 14, 194, 788, 701, 119, 1877, 240, 282, 1736}
|
A129220 | |||||||
6 | 13 | 8191 Prime ![]() 630 × 13 + 1 |
{4, 14, 194, 4870, 3953, 5970, 1857, 36, 1294, 3470, 128, 0}
|
A129221 | |||||||
7 | 17 | 131071 Prime ![]() 7710 × 17 + 1 |
{4, 14, 194, 37634, 95799, 119121, 66179, 53645, 122218, 126220, 70490, 69559, 99585, 78221, 130559, 0}
|
A129222 | |||||||
8 | 19 | 524287 Prime ![]() 27594 × 19 + 1 |
{4, 14, 194, 37634, 218767, 510066, 386344, 323156, 218526, 504140, 103469, 417706, 307417, 382989, 275842, 85226, 523263, 0}
|
A129223 | |||||||
9 | 23 | 8388607 Not prime ![]() 47 × 178481 (2 × 23 + 1) × (7760 × 23 + 1) |
{4, 14, 194, 37634, 7031978, 7033660, 1176429, 7643358, 3179743, 2694768, 763525, 4182158, 7004001, 1531454, 5888805, 1140622, 4321431, 7041324, 2756392, 1280050, 6563009, 6107895}
|
A129224 | |||||||
10 | 29 | 536870911 Not prime ![]() 233 × 1103 × 2089 (8 × 29 + 1) × (72 × 29 + 1) |
{4, 14, 194, 37634, 342576132, 250734296, 433300702, 16341479, 49808751, 57936161, 211467447, 71320725, 91230447, 153832672, 217471443, 239636427, 223645010, 90243197, 27374393, 490737401, 35441039, 303927542, 202574536, 515018664, 330289146, 148819211, 365171774, 458738443}
|
A129225 | |||||||
11 | 31 | 2147483647 Prime ![]() (69273666 × 31 + 1) |
{4, 14, 194, 37634, 1416317954, 669670838, 1937259419, 425413602, 842014276, 12692426, 2044502122, 1119438707, 1190075270, 1450757861, 877666528, 630853853, 940321271, 512995887, 692931217, 1883625615, 1992425718, 721929267, 27220594, 1570086542, 1676390412, 1159251674, 211987665, 1181536708, 65536, 0}
|
A129226 | |||||||
12 | 37 | 137438953471 Not prime ![]() 223 × 616318177 (6 × 37 + 1) × (16657248 × 37 + 1) |
{4, 14, 194, 37634, 1416317954, ..., 117093979072}
|
A?????? | |||||||
13 | 41 | 2199023255551 Not prime ![]() 13367 × 164511353 (326 × 41 + 1) × (4012472 × 41 + 1) |
{4, 14, 194, 37634, 1416317954, ..., 856605019673}
|
A?????? | |||||||
14 | 43 | 8796093022207 Not prime ![]() 431 × 9719 × 2099863 (10 × 43 + 1) × (226 × 43 + 1) × (48834 × 43 + 1) |
{4, 14, 194, 37634, 1416317954, ..., 5774401272921}
|
A?????? | |||||||
15 | 47 | 140737488355327 Not prime ![]() 2351 × 4513 × 13264529 (50 × 47 + 1) × (96 × 47 + 1) × (282224 × 47 + 1) |
{4, 14, 194, 37634, 1416317954, ..., 96699253829728}
|
A?????? |
A095847 Lucas–Lehmer residues for Mersenne numbers with prime indices.
- {1, 0, 0, 0, 1736, 0, 0, 0, 6107895, 458738443, 0, 117093979072, 856605019673, 5774401272921, 96699253829728, 5810550306096509, 450529175803834166, 0, 44350645312365507266, 271761692158955752596, 2941647823169311845731, ...}
Notes
- ↑ Prime Pages, The Largest Known Prime by Year: A Brief History, Another prime page by Chris K. Caldwell <caldwell@utm.edu>.