This site is supported by donations to The OEIS Foundation.

Bessel functions

From OeisWiki
(Redirected from Bessel functions of the first kind)
Jump to: navigation, search


This article page is a stub, please help by expanding it.


Type First kind Second kind
Bessel functions Jν Yν
Modified Bessel functions
Iν
Kν
Hankel functions
H  (1)ν = Jν  +  iYν
H  (2)ν = Jν iYν
Spherical Bessel functions
jν
yν
Modified spherical Bessel functions
iν
kν
Spherical Hankel functions
h(1)ν = jν  +  i  yν
h(2)ν = jν i  yν

Bessel differential equation

The solutions of the Bessel differential equation[1]

x 2
d  2 y
dx 2
+ x
dy
dx
+ (x 2ν 2 ) y = 0

are the Bessel functions,[2] of which there are two kinds:

  • Bessel functions of the first kind
    Jν (x)
    [3]: nonsingular at the origin;
  • Bessel functions of the second kind
    Yν (x)
    [4]: singular at the origin.

Bessel functions of the first kind

The Bessel functions of the first kind
Jν (x)
...

Bessel functions of the first kind (integer order)

The Bessel functions of the first kind
Jn (x)
, with nonnegative order
n = 0, 1, 2, 3, ...
are also known as cylindrical Bessel functions.

Zeros of Bessel functions of the first kind (integer order):[5]

  • For the decimal expansion of first zero of the Bessel functions
    J0(z), J1(z), J2(z), J3(z), J4(z), J5(z),
    see: A115368, A115369, A115370, A115371, A115372, A115373.
  • For the decimal expansion of second zero of the Bessel functions
    J0(z), J1(z), J2(z), J3(z), J4(z), J5(z),
    see: A280868 , A??????, A??????, A??????, A??????, A??????.

Bessel functions of the first kind (half-integer order)

(...)

Bessel functions of the second kind

The Bessel functions of the second kind
Yν (x)
...

Bessel functions of the second kind (integer order)

The Bessel functions of the second kind
Yn (x)
, with nonnegative order
n = 0, 1, 2, 3, ...

Bessel functions of the second kind (half-integer order)

(...)

Modified Bessel differential equation

The solutions of the modified Bessel differential equation[6]

x 2
d  2 y
dx 2
+ x
dy
dx
− (x 2ν 2 ) y = 0

are the modified Bessel functions, of which there are two kinds:

  • Modified Bessel functions of the first kind
    Iν (x)
    [7]: nonsingular at the origin;
  • Modified Bessel functions of the second kind
    Kν (x)
    [8]: singular at the origin.

Spherical Bessel differential equation

The solutions of the spherical Bessel differential equation[9]

x 2
d  2 y
dx 2
+ 2 x
dy
dx
+ [x 2ν (ν + 1)] y = 0

are the spherical Bessel functions,[10] of which there are two kinds:

  • Spherical Bessel functions of the first kind
    jν (x)
    [11]: nonsingular at the origin;
  • Spherical Bessel functions of the second kind
    yν (x)
    [12]: singular at the origin.

Modified spherical Bessel differential equation

The solutions of the modified spherical Bessel differential equation[13]

x 2
d  2 y
dx 2
+ 2 x
dy
dx
− [x 2ν (ν + 1)] y = 0

are the modified spherical Bessel functions,[14] of which there are two kinds:

  • Modified spherical Bessel functions of the first kind
    iν  (x)
    [15]: nonsingular at the origin;
  • Modified spherical Bessel functions of the second kind
    kν  (x)
    [16]: singular at the origin.

Notes

  1. Weisstein, Eric W., Bessel Differential Equation, from MathWorld—A Wolfram Web Resource.
  2. Weisstein, Eric W., Bessel Function, from MathWorld—A Wolfram Web Resource.
  3. Weisstein, Eric W., Bessel Function of the First Kind, from MathWorld—A Wolfram Web Resource.
  4. Weisstein, Eric W., Bessel Function of the Second Kind, from MathWorld—A Wolfram Web Resource.
  5. Weisstein, Eric W., Bessel Function Zeros, from MathWorld—A Wolfram Web Resource.
  6. Weisstein, Eric W., Modified Bessel Differential Equation, from MathWorld—A Wolfram Web Resource.
  7. Weisstein, Eric W., Modified Bessel Function of the First Kind, from MathWorld—A Wolfram Web Resource.
  8. Weisstein, Eric W., Modified Bessel Function of the Second Kind, from MathWorld—A Wolfram Web Resource.
  9. Weisstein, Eric W., Spherical Bessel Differential Equation, from MathWorld—A Wolfram Web Resource.
  10. Weisstein, Eric W., Spherical Bessel Function, from MathWorld—A Wolfram Web Resource.
  11. Weisstein, Eric W., Spherical Bessel Function of the First Kind, from MathWorld—A Wolfram Web Resource.
  12. Weisstein, Eric W., Spherical Bessel Function of the Second Kind, from MathWorld—A Wolfram Web Resource.
  13. Weisstein, Eric W., Modified Spherical Bessel Differential Equation, from MathWorld—A Wolfram Web Resource.
  14. Weisstein, Eric W., Modified Spherical Bessel Function, from MathWorld—A Wolfram Web Resource.
  15. Weisstein, Eric W., Modified Spherical Bessel Function of the First Kind, from MathWorld—A Wolfram Web Resource.
  16. Weisstein, Eric W., Modified Spherical Bessel Function of the Second Kind, from MathWorld—A Wolfram Web Resource.

External links