login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Source file for Index to OEIS

The alphabetical sections of the Index are created "on the fly" from the following plain text file.
This file is useful if you want to search the whole Index, or suggest additions or changes.

The actual file contains less than and greater than signs and quotation marks. To make them visible, these have been replaced here by their html equivalents.

Aa DIVIDER
a(a(n)) = 2n and similar sequences, <a NAME="aan">sequences related to (start):</a>
a(a(n)) = 2n and similar sequences: (1) A000027 A002516 A002517 A002518 A003605 A007378 A007379 A054786 A054787 A054788 A054789 A054790
a(a(n)) = 2n and similar sequences: (2) A079000 A079253 A079905 A080588 A080589 A080591 A080596 A080637
a(a(n)) = 2n and similar sequences: see also: (1) A000201 A001462 A007479 A038752 A038755 A038756 A038757 A054048 A054049 A054791 A054792 A054793
a(a(n)) = 2n and similar sequences: see also: (2) A065804
a(a(n)) = 2n and similar sequences| <a NAME="aan_end">sequences related to (start):</a>
a(n+1)=a(n)^2 + ..., <a NAME="AHSL">recurrences of the form (start):</a>
a(n+1)=a(n)^2 + ..., recurrences of the form, (1) A000058 A000289 A000324 A001042 A001056 A001146 A001510 A001543 A001566 A001696 A001699 A001999
a(n+1)=a(n)^2 + ..., recurrences of the form, (2) A002065 A003010 A003095 A003096 A004019 A028300 A051179
a(n+1)=a(n)^2 + ..., recurrences of the form, (3) A000215 A000283 A007018 A058181 A058182 A098152 A117805 A126023
a(n+1)=a(n)^2 + ...| <a NAME="AHSL_end">recurrences of the form (start):</a>
A(n, d), maximal size of binary code of length n and minimal distance d, <a NAME="And">sequences related to (start):</a>
A(n,3), maximal size of binary code of length n and minimal distance 3: A005864*
A(n,4), maximal size of binary code of length n and minimal distance 4: A005864*
A(n,4,3): A001839
A(n,4,4): A001843
A(n,4,5): A169763
A(n,5), maximal size of binary code of length n and minimal distance 5: A005865*
A(n,6), maximal size of binary code of length n and minimal distance 6: A005865*
A(n,7), maximal size of binary code of length n and minimal distance 7: A005866*
A(n,8), maximal size of binary code of length n and minimal distance 8: A005866*
A(n,8)| maximal size of binary code of length n and minimal distance d, <a NAME="And_end">sequences related to (start):</a>
A(n,d,w)  , maximal size of binary code of length n, constant weight w and minimal distance d, <a NAME="Andw">sequences related to (start):</a>
A(n,d,w) sequences (1): A001839 A001843 A004035 A004036 A004037 A004038 A004039 A004043 A004047 A004052 A004056 A004067
A(n,d,w) sequences (2): A005851 A005852 A005853 A005854 A005855 A005856 A005857 A005858 A005859 A005860 A005861 A005862
A(n,d,w) sequences (3): A005863
A(n,d,w)| , maximal size of binary code of length n, constant weight w and minimal distance d, <a NAME="Andw_end">sequences related to (start):</a>
a/b + b/c + c/a = n: A072716
A2 lattice, also known as hexagonal or triangular lattice, <a NAME="A2">sequences related to (start):</a>
A2 lattice, coordination sequence for: A008458*
A2 lattice, crystal ball sequence for: A003215*
A2 lattice, numbers represented by: A003136*
A2 lattice, polygons on: A036418*
A2 lattice, see also (1):: A005881, A003050, A003051, A006861, A006777, A006775, A003289, A006836, A003291, A006742, A006738, A006803, A005882, A006807
A2 lattice, see also (2):: A006984, A007239, A006778, A006739, A006776, A006813, A006809, A006735, A005550, A006740, A006736, A005552, A003488, A004016
A2 lattice, see also (3):: A002898, A003202, A003290, A002933, A002919, A002920, A001334, A006818, A007274, A007275, A005553, A005399, A006741, A006737
A2 lattice, see also (4):: A005400, A003197, A007207, A002911, A001335, A007200, A005549, A005551, A007201
A2 lattice, see also <a href="http://www.research.att.com/~njas/lattices/A2.html">home page for</a>
A2 lattice, sublattices of: A003051*, A003050*, A054384*
A2 lattice, theta series of: A004016*, A035019*
A2 lattice, theta series of: see also A005881, A005882, A014202
A2 lattice, walks on: A001334*
A2 lattice| also known as hexagonal or triangular lattice, <a NAME="A2_end">sequences related to (start):</a>
A3 lattice: see <a href="Sindx_Fa.html#fcc">f.c.c. lattice</a>
A3* lattice: see <a href="Sindx_Ba.html#bcc">b.c.c. lattice</a>
A4 lattice, <a NAME="A4">sequences related to (start):</a>
A4 lattice, coordination sequence for: A008383*
A4 lattice, crystal ball sequence for: A008384*
A4 lattice, theta sequence for: A008444*
A4 lattice| <a NAME="A4_end">sequences related to (start):</a>
Ab DIVIDER
abelian numbers: A051532
absolute primes: see <a href="Sindx_Pri.html#primes">primes, absolute</a>
abundance: see <a href="Sindx_Ab.html#abundancy">abundancy</a>
abundancy , <a NAME="abundancy">sequences related to (start):</a>
abundancy: A033880*, A033879, A005579, A005347, A005580, A033881, A033882
abundancy: see also <a href="Sindx_De.html#deficiency">deficiency</a>
abundant numbers: A002093, A002182, A005101*, A091191
abundant numbers: consecutive: A094268
abundant numbers: odd: A005231*, A006038, A064001
abundant numbers: see also A004394
abundant|, <a NAME="abundancy_end">sequences related to (start):</a>
acetylene: A000642, A005957
Ackermann function, <a NAME="Ackermann">sequences related to (start):</a>
Ackermann function: A001695, A046859, A014221
Ackermann function: see also <a href="Sindx_Se.html#sequences_which_grow_too_rapidly">sequences which grow too rapidly to have their own entries</a>
Ackermann function| <a NAME="Ackermann_end">sequences related to (start):</a>
acyclic digraphs, see <a href="Sindx_Di.html#digraphs">digraphs, acyclic</a>
add 1, multiply by 1, add 2, multiply by 2, etc., <a NAME="ADD1">sequences related to (start):</a>
add 1, multiply by 1, add 2, multiply by 2, etc.: A019463, A019460, A019462, A019461, A082448
add 1, multiply by 1, add 2, multiply by 2, etc.| <a NAME="ADD1_end">sequences related to (start):</a>
add m then reverse digits, <a NAME="ADDM">sequences related to (start):</a>
add m then reverse digits: A007396, A003608, A007397, A007398, A007399
add m then reverse digits| <a NAME="ADDM_end">sequences related to (start):</a>
addition chains, <a NAME="ADDCHAIN">sequences related to (start):</a>
addition chains: A003064* A003065* A003313* A005766 A008057 A008928 A010787 A079300
addition chains| <a NAME="ADDCHAIN_end">sequences related to (start):</a>
additive bases , <a NAME="additive">sequences related to (start):</a>
additive bases: A004133, A004135, A004136
additive bases: see also <a href="Sindx_Go.html#Golomb">Golomb rulers</a>
additive bases|, <a NAME="additive_end">sequences related to (start):</a>
additive sequences  <a NAME="additive_seqs">sequences related to (start):</a>
additive sequences (00): definition: a(n*m) = a(n) + a(m) if GCD(n,m) = 1
additive sequences (01): completely additive A001222, A001414, A007814, A007949, A048675, A056239, A067666, A076649,
additive sequences (02): completely additive A078458, A078908, A078909, A112765, A113177.
additive sequences (03): A001221, A005063-A005085, A005087-A005091, A005094, A008472, A008474,
additive sequences (04): A008475, A008476, A046660, A052331, A055631, A056169, A056170, A059841,
additive sequences (05): A064372, A064415, A066328, A079978, A080256, A081403, A087207, A090885,
additive sequences (06): A106490, A106492, A113178, A113222, A115357, A121262, A086275
additive sequences (07): completely additive fractions: A083345/A083346.
additive sequences (08): additive fractions: A028235/A007947, A028236/A000027.
additive sequences (09): totally additive: see additive sequences, completely additive
additive sequences (10): strongly additive: see additive sequences, completely additive
additive sequences|  <a NAME="additive_seqs_end">sequences related to (start):</a>
Aho-Sloane paper: see entry for <a href="Sindx_Aa.html#AHSL">a(n+1)=a(n)^2 + ...</a>
Airey's converging factor: A001662
Aitken's array: A011971*
Al DIVIDER
alcohols, <a NAME="ALCOHOLS">sequences related to (start):</a>
alcohols: A000598 A000599 A000600 A002094 A005955 A005956
alcohols| <a NAME="ALCOHOLS_end">sequences related to (start):</a>
Alcuin's sequence: A005044*
Alekseyev's problem: see <a href="Sindx_Do.html#repeat">doubling substrings</a>
algebras , <a NAME="ALGEBRAS">sequences related to (start):</a>
algebras, Jordan: A001776
algebras: (1) A000929 A001330 A001331 A006448 A007154 A007156 A007157 A007158 A007159 A014610 A046001 A052249
algebras: (2) A052250 A052253
algebras; see also <a href="Sindx_Cl.html#cliff">Clifford group</a>, <a href="Sindx_Li.html#Lie">Lie algebras</a>, <a href="Sindx_V.html#VOA">vertex operator algebras</a>
algebras| <a NAME="ALGEBRAS_end">sequences related to (start):</a>
algorithms, <a NAME="ALGORITHMS">sequences related to (start):</a>
algorithms: A005825 A005826 A005827 A006457 A006458 A006459 A006929 A030547 A032426 A049476 A055633
algorithms: see also <a href="Sindx_Eu.html#EucAlg">Euclidean algorithm</a>
algorithms| <a NAME="ALGORITHMS_end">sequences related to (start):</a>
aliquot parts, <a NAME="ALIQUOT">sequences related to (start):</a>
aliquot parts: A001065* (sum of)
aliquot sequence (or trajectory) for n, length of: A098007*, A098008*, A003023, A044050*, A007906, A003062
aliquot trajectories for certain initial values: (1) A008885 A008886 A008887 A008888 A008889 A008890 A008891 A008892 A014360 A014361 A074907 A014362
aliquot trajectories for certain initial values: (2) A045477 A014363 A014364 A014365 A074906
aliquot| parts, <a NAME="ALIQUOT_end">sequences related to (start):</a>
alkanes: A000602*
alkyls, <a NAME="alkyls">sequences related to (start):</a>
alkyls: A000598 A000639 A000642 A000645 A000646 A000647 A000648 A000649 A000650 A005957 A010372 A022014 A036996
alkyls| <a NAME="alkyls_end">sequences related to (start):</a>
all-0's sequence, <a NAME="ALLZERO">sequences related to (start):</a>
all-0's sequence: A000004*
all-1's sequence: A000012*
all-2's sequence: A007395*
all-3's sequence: A010701*
all-4's sequence: A010709*
all-5's sequence: A010716*
all-6's sequence: A010722*
all-7's sequence: A010727*
all-8's sequence: A010731*
all-9's sequence: A010734*
all-9's sequence| <a NAME="ALLZERO_end">sequences related to (start):</a>
almost primes, <a NAME="ALMOSTPRIMES">sequences related to (start):</a>
almost primes:  (0) a k-almost prime has k prime factors, counted with multiplicity
almost primes:  (1) A001358, A014612, A014613, A014614, A046306, A046308, A046310, A046312, A046314, A069272, A069273, A069274
almost primes:  (2) A069275, A069276, A069277, A069278, A069279, A069280, A069281; table A078840.
almost primes: gaps, by increasing Omega: A065516, A114403, A114404, A114405, A114406, A114407, A114408
almost primes| <a NAME="ALMOSTPRIMES_end">sequences related to (start):</a>
almost-natural numbers, <a NAME="ALMOSTNATURAL">sequences related to (start):</a>
almost-natural numbers:  A007376*
almost-natural numbers: for decimations see A127050 A127353 A127414 A127508 A127584 A127734 A127794 A127950 A128178 A128211 A128359 A128423 A128475 A128881
almost-natural numbers| <a NAME="ALMOSTNATURAL_end">sequences related to (start):</a>
alphabetical order, <a NAME="ALPHABETICAL">sequences related to (start):</a>
alphabetical order, numbers in: A000052*
alphabetical order, numbers in: see also A001058, A001061, A001062, A003588
alphabetical order| <a NAME="ALPHABETICAL_end">sequences related to (start):</a>
alternating bit sets: A002487
alternating bit sum: A065359
alternating group A_n, <a NAME="ALTERNATINGGROUP">sequences related to (start):</a>
alternating group A_n, A001710*
alternating group A_n, degrees of irreducible representations of, for n = 5 through 13: A003860, A003861, A003862, A003863, A003864, A003865, A003866, A003867, A003868
alternating group| A_n, <a NAME="ALTERNATINGGROUP_end">sequences related to (start):</a>
alternating permutations: see <a href="Sindx_Per.html#perm">permutations, alternating</a>
alternating sign matrices: see <a href="Sindx_Mat.html#ASM">matrices, alternating sign</a>
Am DIVIDER
amicable numbers, <a NAME="amicable">sequences related to (start):</a>
amicable numbers: A063990*, A063991 (unitary)
amicable pairs, augmented: A007992*, A015630*
amicable pairs, unitary: A002952*, A002953*
amicable pairs: A002025*, A002046*
amicable| numbers, <a NAME="amicable_end">sequences related to (start):</a>
ammonium: A000633
AND(x,y), <a NAME="ANDXY">sequences related to (start):</a>
AND(x,y): A004198*
AND: see also: A003985 A005756 A006581 A007461 A033458 A046951 A050600 A050601 A050602 A051122 A053623
AND:|(x,y), <a NAME="ANDXY_end">sequences related to (start):</a>
Andrews-Mills-Robbins-Rumsey numbers: A005130
animals , <a NAME="animals">sequences related to (start):</a>
animals, square: A000105
animals: (1) A001931 A005773 A005774 A005775 A006193 A006194 A006801 A006861 A007193 A007194 A007195 A007196
animals: (2) A007197 A007198 A007199 A010374 A011789 A011790 A011791 A011792 A033565 A036908 A038151 A038168
animals: (3) A038169 A038170 A038171 A038172 A038173 A038174 A038180 A038181 A038386 A039700 A039740 A039741
animals: (4) A039742 A053022 A055898 A055907 A055919
animals: see also <a href="Sindx_Pol.html#polyominoes">polyominoes</a>
animals| <a NAME="animals_end">sequences related to (start):</a>
anti-divisor: A066272* (for definition), A130799 (initial values)
antichains, <a NAME="ANTICHAINS">sequences related to (start):</a>
antichains: A000372*, A007363*
antichains: see also (1) A003182 A006360 A006361 A006362 A007153 A007852 A007853 A014466 A032263 A051303 A051304 A051305
antichains: see also (2) A051306 A051307 A056932 A056933 A056934 A056935 A056936 A056937 A056939 A056940 A056941
antichains| <a NAME="ANTICHAINS_end">sequences related to (start):</a>
antidiagonals, <a NAME="ANTIDIAGONALS">sequences related to (start):</a>
antidiagonals, definition by example: A003987, A060736, A060734
antidiagonals| <a NAME="ANTIDIAGONALS_end">sequences related to (start):</a>
antidivisor: A066272* (for definition), A130799 (initial values)
antimagic squares: A050257
Ap DIVIDER
AP's of primes, see <a href="Sindx_Pri.html#primes_AP">primes, in arithmetic progressions</a>
Apery numbers, <a NAME="Apery">sequences related to (start):</a>
Apery numbers: A002736*, A005258*, A005259*, A005429*, A005430*
Apery numbers: see also A006353, A006354
Apery's number zeta(3): A002117*, A013631*; see also A033165, A033166, A033167
Apery| numbers, <a NAME="Apery_end">sequences related to (start):</a>
Apocalyptic powers: A007356
Apollonian ball packings, <a NAME="APOLLONIAN">sequences related to (start):</a>
Apollonian ball packings: A045506
Apollonian circle packings: A042944, A042945, A042946, A045673, A045864, A045963
Apollonian| ball packings, <a NAME="APOLLONIAN_end">sequences related to (start):</a>
approximate squaring: see under x*ceiling(x), iterating and x*floor(x), iterating
ApSimon mints problem: A007673
Ap\'{e}ry numbers: see <a href="Sindx_Ap.html#Apery">Apery numbers</a>
Ar DIVIDER
arborescences: A003120
arccos(x) and other inverse trig functions, <a NAME="ARCCOS">sequences related to (start):</a>
arccos(x): see Pi/2-arcsin(x), A055786 / A002595
arccosec(x): see arcsin(1/x), A055786 / A002595
arccosech(x): see arcsinh(1/x), A055786 / A002595
arccosh(x): A052468/A052469
arccotangent reducible numbers: A002312
arcos and arccos are both used in the OEIS!
arcosh and arccosh are both used in the OEIS!
arcsec(x): see Pi/2-arcsin(1/x), A055786 / A002595
arcsech(x): see arccosh(1/x), A052468 / A052469
arcsin(x): A055786/A002595, A006228
arcsinh(x): A055786/A002595
arctangent numbers, triangle of: A008309*
arctangent| and other inverse trig functions, <a NAME="ARCCOS_end">sequences related to (start):</a>
areas: A005386
ARIBAS: A062916
arithmetic mean of 1st n terms is an integer ( 1): A000012 A000326 A001564 A001792 A004767 A005408 A005449 A005843 A016813 A019444 A049450 A057711
arithmetic mean of 1st n terms is an integer ( 2): A076540 A081038 A090942 A092930 A092929 A094588 A104249 A136391 A138879 A157142 A171769
arithmetic mean of 1st n terms is an integer ( 3): A000255 A002104 A099035 A094258
arithmetic means: A007340
arithmetic numbers: A003601*, A090944
arithmetic progressions of primes, see <a href="Sindx_Pri.html#primes_AP">primes, in arithmetic progressions</a>
arithmetic progressions with fixed prime signature, see <a href="Sindx_Pri.html#primes_AP">primes, in arithmetic progressions</a>
arithmetic progressions: A003407, A005115, A005836, A005837, A005838, A005839
Armstrong numbers, <a NAME="Armstrong">sequences related to (start):</a>
Armstrong numbers: A005188*
Armstrong numbers: in other bases: A010343, A010344, A010345, A010346, A010347, A010348, A010349, A010350, A010351, A010352, A010353, A010354
Armstrong numbers: see also A014576
Armstrong| numbers, <a NAME="Armstrong_end">sequences related to (start):</a>
Aronson's sequence, <a NAME="ARONSON">sequences related to (start):</a>
Aronson's sequence, generalized: A079000
Aronson's sequence, generalized: see also <a href="Sindx_Aa.html#aan">sequences of the a(a(n)) = 2n family</a>
Aronson's sequence, numerical analogues of: ( 1) A000201 A003151 A003605 A004956 A005224 A007378 A010906 A014132 A026351 A045412 A061891 A064437
Aronson's sequence, numerical analogues of: ( 2) A073074 A079000* A079250 A079251 A079252 A079253 A079254 A079255 A079256 A079257 A079258 A079259
Aronson's sequence, numerical analogues of: ( 3) A079313 A079325 A079351 A079358 A079905 A079946 A079948 A080029 A080030 A080031 A080032 A080033
Aronson's sequence, numerical analogues of: ( 4) A080034 A080036 A080037 A080081 A080199 A080353 A080455 A080456 A080457 A080458 A080460 A080574
Aronson's sequence, numerical analogues of: ( 5) A080578 A080579 A080580 A080588 A080589 A080590 A080591 A080600 A080633 A080637 A080639 A080640
Aronson's sequence, numerical analogues of: ( 6) A080641 A080644 A080645 A080646 A080652 A080653 A080667 A080707 A080708 A080710 A080711 A080712
Aronson's sequence, numerical analogues of: ( 7) A080714 A080720 A080722 A080723 A080724 A080725 A080726 A080727 A080728 A080731 A080745 A080746
Aronson's sequence, numerical analogues of: ( 8) A080752 A080753 A080754 A080759 A080760 A080780 A080900 A080901 A080903 A080904 A080939 A080949
Aronson's sequence, numerical analogues of: ( 9) A081023 A081024 A081260 A081746 A091387 A091388 A091389 A091390 A091391
Aronson's sequence: A005224*, A080520 (French version)
Aronson|'s sequence, <a NAME="ARONSON_end">sequences related to (start):</a>
arrays , sequences used for indexing, <a NAME="ARRAYINDEXING">sequences related to (start):</a>
arrays, indexing: see <a href="a073189.txt">a073189.txt</a>
arrays, sequences used for indexing: (1) A000194 A002024 A002260 A002262 A003056 A003057 A003059 A004736 A025581 A048760 A053186 A055086
arrays, sequences used for indexing: (2) A055087 A071797 A073188 A073189
arrays: A003169, A007073, A007074, A007072
arrays|, sequences used for indexing, <a NAME="ARRAYINDEXING_end">sequences related to (start):</a>
artiads: A001583*
Artin's conjecture  or constant, <a NAME="Artin">sequences related to (start):</a>
Artin's conjecture : A001122
Artin's conjecture, Artin's constants: A005596* A048296* A065414 A065417 A066517
Artin's conjecture: see also <a href="Sindx_Pri.html#primes_root">primes by primitive root</a>
Artin's conjecture|  or constant, <a NAME="Artin_end">sequences related to (start):</a>
association schemes, <a NAME="ASSOC">sequences related to (start):</a>
association schemes: A057495*, A057498 (noncommutative), A057499 (primitive)
association schemes| <a NAME="ASSOC_end">sequences related to (start):</a>
asubb: see A121295, A121296, A121297, A121623 and other dungeon sequences, also A122618
asymmetric channel, codes for: A010101
asymmetric sequences: A002842
asymptotic expansions, <a NAME="ASYMPTOTIC">sequences related to (start):</a>
asymptotic expansions:  A001163 A001164 A002073 A002074 A002304 A002305 A002514 A006572 A006953
asymptotic expansions| <a NAME="ASYMPTOTIC_end">sequences related to (start):</a>
atomic species: A005226, A005227, A007650
atomic weights: A007656*
audioactive decay: see <a href="Sindx_Sa.html#swys">"say what you see"</a>
autobiographical numbers: A046043, A138480, A104784, but see also <a href="Sindx_Se.html#SELFDESCRIBING">self-describing numbers</a>
automata, see <a href="Sindx_Ce.html#cell">cellular automata</a>
automorphic numbers , <a NAME="automorphic">sequences related to (start):</a>
automorphic numbers: (1) A003226 A007185 A016090 A018247 A018248 A033819 A074194 A074250 A074321 A074330 A074332
automorphic numbers: (2) A030984 A030985 A030986 A030987 A030988 A030989 A030990 A030991 A030992 A030993 A030994
automorphic numbers: (3) A030995 A035383 A046883 A046884 A082576
automorphic numbers: see also A045537, A075154
automorphic numbers|, <a NAME="automorphic_end">sequences related to (start):</a>
A_2 lattice: see <a href="Sindx_Aa.html#A2">A2 lattice</a>
A_3 lattice: see <a href="Sindx_Fa.html#fcc">f.c.c. lattice</a>
A_4 lattice: see <a href="Sindx_Aa.html#A4">A4 lattice</a>
a_b: see A121295, A121296, A121297, A121623, A122618
a_b: see also <a href="Sindx_Do.html#dung">dungeons</a>
A_n lattice: coordination sequence for: see A005901.
A_n sequence, primes in: A111157
Ba DIVIDER
B-trees, <a NAME="BTREES">sequences related to (start):</a>
B-trees: A014535*, A037026, A058521, A058518, A058519, A058520
B-trees| <a NAME="BTREES_end">sequences related to (start):</a>
b.c.c. lattice , <a NAME="bcc">sequences related to (start):</a>
b.c.c. lattice, animals on:  A007195 A007196 A007197 A038170 A038171 A038180 A038181 A038386
b.c.c. lattice, coordination sequence for: A005897*
b.c.c. lattice, partition function: A001406
b.c.c. lattice, polygons on: A001667
b.c.c. lattice, see also <a href="http://www.research.att.com/~njas/lattices/Ds3.html">home page for</a>
b.c.c. lattice, series expansions for: (1) A002167 A002168 A002914 A002917 A002925 A003194 A003206 A003210 A003492 A003497 A007218 A006805
b.c.c. lattice, series expansions for: (2) A006811 A006838 A007218 A010559 A010560 A010564 A047711
b.c.c. lattice, theta series of: A004013* A004014* A004024 A004025 A005869 A008664 A008665
b.c.c. lattice, walks on: A001666, A001667, A002903
b.c.c. lattice|, <a NAME="bcc_end">sequences related to (start):</a>
Baby Monster simple group: A001378*
backgammon: A055100
Baker-Campbell-Hausdorff expansion: A005489
balanced numbers: A020492
Balancing weights: A002838
ballot numbers , <a NAME="ballot">sequences related to (start):</a>
ballot numbers: A003121*
ballot numbers: see also A002026, A006123, A007054, A007272, A034928, A034929
ballot numbers|, <a NAME="ballot_end">sequences related to (start):</a>
balls into boxes, <a NAME="balls_into_boxes">sequences related to (start):</a>
balls into boxes: (1) A000110 A001700 A001861 A005337 A005338 A005339 A005340 A007318 A019575 A019576 A019577 A019578
balls into boxes: (2) A019579 A019580 A019581 A027710
balls into boxes| <a NAME="balls_into_boxes_end">sequences related to (start):</a>
balls on the lawn: see tennis ball problem
Barker sequences (or Barker codes): A011758, A011759, A091704
Barnes-Wall lattices, <a NAME="BW">sequences related to (start):</a>
Barnes-Wall lattices, groups of: A014115*, A014116*
Barnes-Wall lattices, in 2^2 dim., theta series of: A004011
Barnes-Wall lattices, in 2^3 dim., theta series of: A004009
Barnes-Wall lattices, in 2^4 dim., theta series of: A008409
Barnes-Wall lattices, in 2^5 dim., theta series of: A004670
Barnes-Wall lattices, in 2^6 dim., theta series of: A103936
Barnes-Wall lattices, in 2^7 dim., theta series of: A100004
Barnes-Wall lattices, kissing numbers of: A006088*
Barnes-Wall lattices, odd: A014711*
Barnes-Wall lattices, see also A035596
Barnes-Wall lattices, vectors of twice minimum: A110972, A110973
Barnes-Wall lattices: see also <a href="Sindx_Cl.html#cliff">Clifford groups</a>
Barnes-Wall lattices| <a NAME="BW_end">sequences related to (start):</a>
barriers for omega(n): A005236
barycentric subdivisions: A002050, A005461, A005462, A005463, A005464
base -2: A039724*, A005351*, A005352
base, factorial, A007623
base, fractional , <a NAME="base_fractional">sequences related to (start):</a>
base, fractional, definition: A024661*
base, fractional: defined in A024630
base, fractional|, <a NAME="base_fractional_end">sequences related to (start):</a>
baseball: see Ruth-Aaron numbers, Maris-McGwire numbers
Batcher parallel sort: A006282
Baxter permutations: A001181*, A001183*, A001185*
bcc lattice: see <a href="Sindx_Ba.html#bcc">b.c.c. lattice</a>
Be DIVIDER
Beans-Don't-Talk: A005694, A005695, A005696, A005697, A005698
Beanstalk: A005692, A005693
Beatty sequences   <a NAME="Beatty">sequences related to (start):</a>
Beatty sequences  : for a constant c, the two Beatty sequences are the main sequence floor(n*c) and the complementary sequence floor(n*c') where c' = c/(c-1)).
Beatty sequences for: (n+1/2)/2 (A038707), (n+1/2)/4 (A038709), Feigenbaum's constant (A038123), Brun's constant (A038124)
Beatty sequences for: (sqrt(5)+5)/2 (A003231), (1 + sqrt 3)/2 (A003511), sqrt 3 + 2 (A003512), (3+Sqrt[3])/2 (A054406)
Beatty sequences for: 1+1/Pi (A059531), 1+Pi (A059532), 1+Catalan's constant (A059533), 1+1/Catalan's constant (A059534)
Beatty sequences for: 1+gamma A001620 (A059555), 1+1/gamma (A059556), 1+gamma^2, (A059557), 1+1/gamma^2 (A059558), 1-ln(1/gamma), (A059559), 1-1/ln(1/gamma) (A059560)
Beatty sequences for: 3/4, 2/5, 3/5, 2/7, 3/7, 4/7, 5/7, 3/8, 5/8, 5/13, 8/13, 8/21, 13/21, 7/19, 11/30 (A057353-A057367)
Beatty sequences for: 3^(1/3) (A059539), 3^(1/3)/(3^(1/3)-1) (A059540), 1+ln(2) (A059541), 1+1/ln(2) (A059542), ln(3) (A059543), ln(3)/(ln(3)-1) (A059544)
Beatty sequences for: e (A022843), e/(e-1) (A054385), 1/(e-2) (A000062), 1/e (A032634), e-1 (A000210), e+1 (A000572), (e+1)/e (A006594), e^(1/e) (A037087)
Beatty sequences for: e^gamma (A059565), e^gamma/(e^gamma-1) (A059566), 1-ln(ln(2)) (A059567), 1-1/ln(ln(2)) (A059568)
Beatty sequences for: e^pi (A038152), pi^e (A038153), 2^sqrt(2) (A038127), Euler's gamma (A038128), 2^(1/3) (A038129)
Beatty sequences for: Gamma(1/3) (A059551), Gamma(1/3)/(Gamma(1/3)-1) (A059552), Gamma(2/3) (A059553), Gamma(2/3)/(Gamma(2/3)-1) (A059554)
Beatty sequences for: ln(10) (A059545), ln(10)/(ln(10)-1) (A059546), 1+1/ln(3) (A059547), 1+ln(3) (A059548), 1+1/ln(10) (A059549), 1+ln(10) (A059550)
Beatty sequences for: ln(Pi) (A059561), ln(Pi)/(ln(Pi)-1) (A059562), e+1/e (A059563), (e^2+1)/(e^2-e+1) (A059564)
Beatty sequences for: Pi (A022844), Pi/(Pi-1) (A054386), 1/Pi (A032615), pi^2 (A037085), sqrt(pi) (A037086), 2*pi (A038130), sqrt(2 pi)  (A038126)
Beatty sequences for: Pi^2/6, or zeta(2) (A059535), zeta(2)/(zeta(2)-1) (A059536), zeta(3) (A059537), zeta(3)/(zeta(3)-1) (A059538)
Beatty sequences for: sqrt(2) (A001951), 2 + sqrt(2) (A001952), 1 + 1/sqrt(11) (A001955), 1 + sqrt(11) (A001956)
Beatty sequences for: sqrt(3) (A022838), sqrt(5) (A022839), sqrt(6) (A022840), sqrt(7) (A022841), sqrt(8) (A022842)
Beatty sequences for: sqrt(5) - 1 (A001961), sqrt(5) + 3 (A001962), 1+sqrt(2) (A003151), 1/(2-sqrt(2)) (A003152)
Beatty sequences for: tau (A000201), tau^2 (A001950), tau^3 (A004976), tau^(4+n) (n=0..16) (A004919+n)
Beatty sequences: references about: see especially A000201
Beatty sequences: see also (1) A014245 A014246 A022803 A022804 A022805 A022806 A022879 A022880 A023541 A023542 A045671 A045672
Beatty sequences: see also (2) A045681 A045682 A045749 A045750 A045774 A045775
Beatty sequences|  <a NAME="Beatty_end">sequences related to (start):</a>
Beethoven: A001491, A054245, A123456
Beethoven: see also <a href="Sindx_Mu.html#music">music</a>
beginning with t: A006092, A005224
Bell numbers, <a NAME="BELL">sequences related to (start):</a>
Bell numbers: A000110*
Bell numbers: see also A007311
Bell numbers| <a NAME="BELL_end">sequences related to (start):</a>
bell ringing , <a NAME="bell_ringing">sequences related to (start)</a>
bell ringing: (1) A090277 A090278 A090279 A090280 A090281 A090282 A090283 A090284
bell ringing: (2) A057112 A060112 A060135
bell ringing|, <a NAME="bell_ringing_end">sequences related to (start)</a>
Bell's formula: A002575, A002576
bemirps: A048895
bending: see <a href="Sindx_Fo.html#fold">folding</a>
Benford numbers: A004002*
Benny, Jack: A056064
bent functions: A004491, A099090
benzene: A000639
Berlekamp's switching game: A005311*
Bernoulli numbers  , <a NAME="Bernoulli">sequences related to (start):</a>
Bernoulli numbers  B_n: A027641**/A027642*. A027641 has all the references, links and formulae.
Bernoulli numbers  B_{2n}: A000367*/A002445*, but see especially A027641
Bernoulli numbers (n+1)B_n: A050925/A050932, A002427/A006955
Bernoulli numbers, generalized: A006568, A006569, A002678, A002679
Bernoulli numbers, higher order: A001904, A001905
Bernoulli numbers, irregularity index of primes: A061576, A091888, A007703, A000928, A091887, A073276, A073277, A060975
Bernoulli numbers, numerators and their factorizations: (1) A000367 = numerators, A000928 = irregular primes, A001067 A001896 A002427 A002431 A002443 A002657 A007703 A017329 A027641 A027643
Bernoulli numbers, numerators and their factorizations: (2) A027645 A027647 A029762 A029764 A033470 A033474 A035078 A035112 A043295 A043303 A046988 A050925
Bernoulli numbers, numerators and their factorizations: (3) A053382 A060054 A067778 A068206 A068399 A068528 A069040 A069044 A070192 A070193 A071020 A071772
Bernoulli numbers, numerators and their factorizations: (4) A073276 A075178 A076547 A076549 A079294 = number of prime factors, A083687 A084217 A085092 A085737 A089170 A089644 A089655
Bernoulli numbers, numerators and their factorizations: (5) A090177 A090179 A090495 A090496 A090629 A090789 A090790 A090791 A090793 A090798 A090800 A090817
Bernoulli numbers, numerators and their factorizations: (6) A090818 A090823 A090825 A090865 A090943 = squareful numerators, A090947 = largest prime factor, A091216 A091888 A092132 A092133 A092194 A092195
Bernoulli numbers, numerators and their factorizations: (7) A092221 A092222 A092223 A092224 A092225 A092226 A092227 A092228 A092229 A092230 A092231 A092291
Bernoulli numbers, numerators and their factorizations: (8) A090997 A090987
Bernoulli numbers, poly-Bernouli numbers: A027643 A027644 A027645 A027646 A027647 A027648 A027649 A027650 A027651
Bernoulli numbers, see also (1): A000146 A000182 A000928 A001469 A001896 A001947 A002105 A002208 A002316 A002431 A002443 A002444
Bernoulli numbers, see also (2): A002657 A002790 A002882 A003245 A003264 A003272 A003326 A003414 A003457 A004193 A006863 A006953
Bernoulli numbers, see also (3): A006954 A014509 A020527 A020528 A020529 A029762 A029763 A029764 A029765 A030076 A033469 A033470
Bernoulli numbers, see also (4): A033471 A033473 A033474 A033475 A035077 A035078 A035112 A045979 A046094 A046968 A047680 A047681
Bernoulli numbers, see also (5): A047682 A047683 A047872 A051222 A051225 A051226 A051227 A051228 A051229 A051230
Bernoulli numbers, see also (6): A027762
Bernoulli numbers, triangles that generate: A051714/A051715, A085737/A085738
Bernoulli numbers| , <a NAME="Bernoulli_end">sequences related to (start):</a>
Bernoulli polynomials, <a NAME="BERNOULLIPOLYNOMIALS">sequences related to (start):</a>
Bernoulli polynomials, coefficients of: A053382*/A053383*, A048998*, A048999*
Bernoulli polynomials, see also A001898 A002558 A020527 A020528 A020529 A020543 A020544 A020545 A020546
Bernoulli polynomials| <a NAME="BERNOULLIPOLYNOMIALS_end">sequences related to (start):</a>
Bernoulli twin numbers: A051716/A051717
Bernstein squares: A097871
Berstel sequence: A007420*
Bertrand's Postulate, <a NAME="Bertrand">sequences related to (start):</a>
Bertrand's Postulate: A035250*, A036378, A006992, A051501
Bertrand's Postulate| <a NAME="Bertrand_end">sequences related to (start):</a>
Bessel function or Bessel polynomial , <a NAME="Bessel">sequences related to (start):</a>
Bessel function or Bessel polynomial: (1) A000134 A000155 A000167 A000175 A000249 A000275 A000331 A001880
Bessel function or Bessel polynomial: (2) A001881 A002190 A002506 A006040 A006041 A014401 A039699 A046960 A046961 A046962 A046963
Bessel function or Bessel polynomial: (3) A051148 A051149
Bessel functions:  J_0: A002454, J_1: A002474, J_2: A002506, J_3: A014401, J_4: A061403, J_5: A061404, J_6: A061405, J_7: A061407, J_9: A061440 J_10: A061441
Bessel numbers: A006789, A111924, A100861
Bessel polynomial, coefficients of: A001497, A001498
Bessel polynomial, defined: A001515, A001497, A001498
Bessel polynomial, values of: (1) A001515, A001517, A001518, A065919, A001514, A065920, A065921, A065922, A006199, A065707, A000806, A002119
Bessel polynomial, values of: (2) A065923, A001516, A065944, A065945, A065946, A065947, A065948, A065949, A065950, A065951
Bessel triangle: A001497*, A000369,  A001498, A011801, A013988, A004747, A049403, A065931, A065943
Bessel| function or Bessel polynomial , <a NAME="Bessel_end">sequences related to (start):</a>
betrothed numbers: A003502*, A003503*, A005276*
Bi DIVIDER
bicoverings: A002718, A002719
bigomega(n), number of primes dividing n (counted with repetition): A001222
binary codes, maximal size of constant weight, see <a href="Sindx_Aa.html#Andw">A(n,d,w)</a>
binary codes, maximal size of, see <a href="Sindx_Aa.html#And">A(n, d)</a>
binary codes: see <a href="Sindx_Coa.html#codes_binary_linear">codes, binary</a>
binary digits: see <a href="Sindx_Bi.html#binary">binary expansion</a>
binary entropy: A003314
binary expansion of n , <a NAME="binary">sequences related to (start):</a>
binary expansion of n: A000120* (weight), A000788*, A000069*, A001969*, A023416*, A059015*, A007088*, A070939*
binary expansion of n: produces a prime: A036952, A065720, A156059
binary expansion of n: see also (1) A005536, A003159, A006995, A006364, A054868, A070940, A070941, A070943, A001511, A029837, A037800
binary expansion of n: see also (2) A014081, A014082
binary expansion of n|, <a NAME="binary_end">sequences related to (start):</a>
binary matrices: see <a href="Sindx_Mat.html#binmat">matrices, binary</a>
binary numbers: A007088
binary order of n: A029837, A070939
binary partitions: see <a href="Sindx_Par.html#part">partitions, binary</a>
binary quadratic forms: see <a href="Sindx_Qua.html#quadform">quadratic forms</a>, binary
Binary sequences:: A006840
binary strings of length n: A007931*
binary strings, see also: A007039, A007040, A005598
binary vectors, grandchildren of: A057606, A057607, A000124
Binary vectors:: A005253, A003440
binary weight of n, <a NAME="BINARYWEIGHT">sequences related to (start):</a>
binary weight of n: A000120*
binary weight of n: see also <a href="Sindx_We.html#WEIGHTOFN">weight of n</a>
binary weight of n| <a NAME="BINARYWEIGHT_end">sequences related to (start):</a>
binomial coefficient, <a NAME="binomial">sequences related to (start):</a>
binomial coefficients, A000012* = C(n,0), A000027* = C(n,1), A000217* = C(n,2), A000292* = C(n,3), etc.
binomial coefficients, central: A000984*, A001405*, A001700
Binomial coefficients, LCM of:: A002944
Binomial coefficients, occurrences of n as:: A003016
binomial coefficients, triangle of: A007318*
binomial coefficients: (1):: A005733, A005735, A005809, A001791, A005810, A000332, A002054, A000389, A002694, A003516
binomial coefficients: (2):: A000580, A002696, A000581, A000582, A001287, A001288
binomial coefficients: see also <a href="Sindx_Ga.html#Gaussian_binomial_coefficients">Gaussian binomial coefficients</a>
binomial coefficients: sums:: A001527, A003161, A003162
binomial coefficient| <a NAME="binomial_end">sequences related to (start):</a>
Binomial moments:: A000910
binomial transform, <a NAME="binomial_transform">sequences related to (start):</a>
binomial transform: see <a href="transforms.txt">Transforms</a> file
binomial transforms:: A007442, A000371, A007476, A007443, A007317, A005331, A007405, A007472, A004211, A005572, A005494, A004212, A005021, A004213, A005011, A005327, A005014
binomial transform| <a NAME="binomial_transform_end">sequences related to (start):</a>
binomial(n,k): binomial coefficient n-choose-k (see A007318)
bipartite (1):: A007083, A007029, A000291, A006823, A006612, A002774, A007085, A005142, A000412, A004100
bipartite (2):: A001832, A005335, A005336, A007084, A002762, A002766, A002763, A006824, A006825, A007028
bipartite (3):: A002767, A000465, A002768, A002764, A000491, A002765, A002755, A002756, A002757, A002758, A002759
bipartite , <a NAME="BIPARTITE">sequences related to (start):</a>
bipartite graphs: see also <a href="Sindx_Gra.html#graphs">graphs, bipartite</a>
bipartite|, <a NAME="BIPARTITE_end">sequences related to (start):</a>
biprimes: A001358
birthday paradox: A014088 A033810 A050255 A050256 A051008 A064619
bisections, <a NAME="BISECTIONS">sequences related to (start):</a>
bisections: A001519, A002478, A001906, A002878, A002287, A002286
bisections: see also <a href="Sindx_Di.html#dissections">dissections</a>
bisections| <a NAME="BISECTIONS_end">sequences related to (start):</a>
Bishops problem, <a NAME="BISHOPS">sequences related to (start):</a>
Bishops problem:: A005633, A005631, A005635, A002465*, A005634, A005632
Bishops problem| <a NAME="BISHOPS_end">sequences related to (start):</a>
bits: see <a href="Sindx_Bi.html#binary">binary expansion</a>
bitwise exclusive OR, see under XOR
Bl DIVIDER
blobs: A003168 A007161 A007166 A048173
blocks: see <a href="Sindx_Gra.html#graphs">graphs, nonseparable</a>
blocks: see also <a href="Sindx_Lc.html#LEGO">LEGO blocks</a>
blocks: see also under <a href="Sindx_Par.html#part">partitions</a>
Bo DIVIDER
Board of Directors Problem: A005254, A037354
Bode's law: A003461*, A061654
body-centered cubic lattice: see <a href="Sindx_Ba.html#bcc">b.c.c. lattice</a>
Bohr radius: A003671*
Bokmal: A014656
Bokmal: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
bond percolation, <a NAME="BOND">sequences related to (start):</a>
bond percolation:: A006727, A006728, A006730, A006738, A006729, A006735, A006736, A006737
bond percolation| <a NAME="BOND_end">sequences related to (start):</a>
Boolean functions, <a NAME="Boolean">sequences related to (start):</a>
Boolean functions, balanced: A000721
Boolean functions, cascade-realizable: A005608, A005609, A005610, A005611, A005613, A005619, A005749
Boolean functions, Dedekind's problem: see Boolean functions, monotone (Dedekind's problem)
Boolean functions, fanout-free: A005737, A005736, A005742, A005738, A005740, A005612, A005615, A005617, A005743, A005741
Boolean functions, inequivalent, under action of various groups (1): A000133, A000214, A000231, A000585, A000614, A001289, A003180, A008842, A011782, A028401, A028402, A028403
Boolean functions, inequivalent, under action of various groups (2): A028404, A028405, A028406, A028407, A028409, A028410, A028411, A049461, A051460, A051502, A053040, A057132
Boolean functions, invertible: A001038, A000656, A000653, A000722, A000654, A000725, A000724, A000723, A001537, A000652, A128904
Boolean functions, irreducible: A000616*
Boolean functions, minimal numbers of elements needed to realize any: A056287*, A057241*, A058759*
Boolean functions, monotone (Dedekind's problem): A000372*, A003182*, A007153*, A001206*, A014466*
Boolean functions, monotone (Dedekind's problem): see also <a href="Sindx_De.html#Dedekind">Dedekind's problem</a>
Boolean functions, monotone (Dedekind's problem): see also A016269, A047707, A051112, A051113, A051114, A051115, A051116, A051117, A051118
Boolean functions, nondegenerate: A000371*, A000618, A003181, A001528
Boolean functions, see also (1): A000157, A000370, A000612, A000613, A001087, A005530, A005581, A005744, A005756, A018926, A036240, A037267
Boolean functions, see also (2): A037843, A051185, A051355, A051360, A051361, A051368, A051375, A051376, A051381, A056778
Boolean functions, see also <a href="Sindx_Ca.html#canalizing">canalizing functions</a>
Boolean functions, see also <a href="Sindx_Sw.html#switching">switching networks</a>
Boolean functions, see also <a href="Sindx_Th.html#threshold">threshold functions</a>
Boolean functions, self-complementary: A000610*, A001320*, A053037
Boolean functions, self-dual monotone: A001206*
Boolean functions, self-dual: A001531*, A006688*, A002080, A008840, A008841
Boolean functions, triangle of numbers of: A039754, A051486*, A053874*, A052265*, A054724*, A022619*, A059090
Boolean functions, unate: A003183
Boolean functions| <a NAME="Boolean_end">sequences related to (start):</a>
Boolean lattices: A005493
Boolean polynomials: see polynomials, Boolean
Boolian: the correct spelling is Boolean
boson strings, <a NAME="boson">sequences related to (start):</a>
boson strings: A005290 A005291 A005292 A005293 A005294 A005307 A005308
boson strings| <a NAME="boson_end">sequences related to (start):</a>
Boubaker polynomials: A135929, A138034, A160242, A162180
bouquets: A005431
boustrophedon transform, <a NAME="boustrophedon">sequences related to (start):</a>
boustrophedon transform, definition see <a href="http://www.research.att.com/~njas/doc/bous.txt">Millar-Sloane-Young paper</a>
boustrophedon transform, in Maple, see <a href="transforms.txt">Transforms</a> file
boustrophedon transform, of various sequences: (0) A000111*, A000182*, A000364*, A000667*
boustrophedon transform, of various sequences: (1) A000660 A000674 A000687 A000697 A000718 A000732 A000733 A000734 A000736 A000737 A000738
boustrophedon transform, of various sequences: (2) A000744 A000745 A000746 A000747 A000751 A000752 A000753 A000754 A000756 A000764 A029885
boustrophedon transform, variations on: (1) A059216, A058217, A059219, A059220, A059502, A059503, A059505, A059506, A059507, A059508, A059509, A059226
boustrophedon transform, variations on: (2) A059227, A059228, A059229, A059234, A059235, A058237
boustrophedon transform, variations on: (3) A059510 - A059512, A027994
boustrophedon transform: see also A000661
boustrophedon transform| <a NAME="boustrophedon_end">sequences related to (start):</a>
bowling: A060853
Br DIVIDER
bracelets , <a NAME="bracelets">sequences related to (start):</a>
bracelets , A000029*, A005232, A005513-A005516, A007123, A032279-A032288, A073020, A078925
bracelets, 3-colored, A005654, A005656, A027671*, A032240, A032294
bracelets, 4-colored, A032241, A032275*, A032295
bracelets, 5-colored, A032242, A032276*, A032296
bracelets, aperiodic, A001371*, A032294-A032296, A045628, A045633
bracelets, asymmetric, A032239*, A032240-A032242
bracelets, balanced, A005648*, A006079, A006840, A045628, A045633
bracelets, complements are equivalent, A000011*, A006080, A006840, A045633, A053656, A066313-A066316
bracelets, identity, see bracelets, asymmetric
bracelets, triangle, A052307*, A052308, A052309, A052310
bracelets: see also <a href="Sindx_Lu.html#Lyndon">Lyndon words</a>, <a href="Sindx_Ne.html#necklaces">necklaces</a>
bracelets: see also A005595, A007148, A027670, A054499
bracelets|, <a NAME="bracelets_end">sequences related to (start):</a>
bracket function: A000748, A000749, A000750, A001659 , A006090
brackets, ways to arrange: see <a href="Sindx_Par.html#parens">parentheses, ways to arrange</a>
braids, <a NAME="braids">sequences related to (start):</a>
braids: A054761*, A000071, A054480, A007988, A007990, A007991, A007993, A007994, A007995
braids| <a NAME="braids_end">sequences related to (start):</a>
Braille: A079399, A072283
Bravais lattices: A004030*
Brazilian Portuguese: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
bricks , <a NAME="bricks">sequences related to (start):</a>
bricks: A000472 A003697 A006291 A006292 A006293 A031173 A031174 A031175
bricks|, <a NAME="bricks_end">sequences related to (start):</a>
bridge hands, sorting: A065603
brilliant numbers: A078972*, A085647
Brun's constant: A065421, A005597, A038124
Buffon's needle: A060294*
building numbers from other numbers and the operations of addition, subtraction, etc: see under <a href="Sindx_Fo.html#4x4">four 4's problem</a>
bull (in graph theory): see A079577
Burnside's problem in group theory: A051576, A079682, A079683
Busy Beaver problem , <a NAME="beaver">sequences related to (start):</a>
Busy Beaver problem: A028444*, A004147*, A060843*, A052200
Busy Beaver problem: see also <a href="Sindx_Tu.html#Turing">Turing machines</a>
Busy Beaver problem|, <a NAME="beaver_end">sequences related to (start):</a>
B_2 sequences , <a NAME="B_2">sequences related to (start):</a>
B_2 sequences: A005282, A010672, A011185, A025582
B_2 sequences|, <a NAME="B_2_end">sequences related to (start):</a>
B_n lattice: coordination sequence for: see A022145.
Ca DIVIDER
C(n,2): A000217*
C(n,3): A000292*
C(n,4): A000332*
C(n,k): binomial coefficient n-choose-k (see A007318)
cab-taxi numbers: A047696
cabtaxi numbers: see cab-taxi numbers
cacti , <a NAME="cacti">sequences related to (start):</a>
cacti, 2-ary: A054357*, A054358
cacti, 3-ary: A052393*, A054422
cacti, 4-ary: A052394*, A052395
cacti, 5-ary: A054363*, A054364
cacti, 6-ary: A054366*, A054367
cacti, 7-ary: A054369*, A054370
cacti, plane, 3-gonal: A054423
cacti, plane, 4-gonal: A054362
cacti, plane, 5-gonal: A054365
cacti, plane, 6-gonal: A054368
cacti, plane, 7-gonal: A054371
cacti, polygonal: A035082*, A035088*
cacti, rooted, polygonal: A035085*, A035086, A035087*
cacti, rooted, triangular: A002067, A003080*, A032035, A034940*, A091481, A091486, A091488
cacti, rooted, with bridges: A000237*, A035351*, A035352, A035353, A035357
cacti, triangular: A003081*, A034941*, A091485, A091487, A091489
cacti, with bridges: A000083* (unlabeled), A000314* (labeled), A035356
cacti|, <a NAME="cacti_end">sequences related to (start):</a>
Cahen's constant: A006279, A006280, A006281
cake numbers: A000125*
calculator display: A006942* A010371* A018846 A018847 A018849 A038136 A053701 A063720
Cald's sequence: A006509*
calendar, <a NAME="calendar">sequences related to (start):</a>
calendar, dates of days in: A008684*
calendar, days in year: A011763*
calendar, days per century: A011770, A011771
calendar, lengths of months: A008685*
calendar: see also A001356, A031139, A051121, A119406, A135795, A143994, A141039, A143995, A141287
calendar| <a NAME="calendar_end">sequences related to (start):</a>
campanology: see <a href="Sindx_Be.html#bell_ringing">bell ringing</a>
canalizing Boolean functions, <a NAME="canalizing">sequences related to (start):</a>
canalizing Boolean functions: A102449, A109460, A109461, A109462
canalizing Boolean functions| <a NAME="canalizing_end">sequences related to (start):</a>
cannonball problem: see A001032
Cantor set, <a NAME="CANTOR">sequences related to (start):</a>
Cantor set: A054591 A170951 A170952 A110081 A121153 A170944 A135666 A088370
Cantor set: see also A005823 A170830 A170853 A102525 A137178 A076481 A055246 A055247 A028491 A113246 A134583
Cantor set| <a NAME="CANTOR_end">sequences related to (start):</a>
Cantor's sigma function: A055068
card arranging: A006063
card arranging: see also <a href="Sindx_So.html#sorting">sorting</a>
card games: A051921
card games: see also <a href="Sindx_Poi.html#poker">poker</a>
card matching, <a NAME="cardmatch">sequences related to (start):</a>
card matching: (1) A000279 A000316 A000459 A000489 A000535 A059056 A059057 A059058 A059059 A059060 A059061 A059062
card matching: (2) A059063 A059064 A059065 A059066 A059067 A059068 A059069 A059070 A059071 A059072 A059073 A059074
card matching| <a NAME="cardmatch_end">sequences related to (start):</a>
card sorting: see <a href="Sindx_So.html#sorting">sorting</a>
Carmichael numbers , <a NAME="Carmichael">sequences related to (start):</a>
Carmichael numbers: A002997*
Carmichael numbers: see also (1) A002322 A006931 A006972 A029553 A029554 A029555 A029556 A029557 A029558 A029559 A029560 A029561
Carmichael numbers: see also (2) A029562 A029563 A029564 A029565 A029566 A029567 A029568 A029569 A029570 A029590 A029591 A033502
Carmichael numbers: see also (3) A034380 A036060 A036429 A046025 A051663
Carmichael numbers: see also (4) A074379 and A112428-A112432
Carmichael numbers: see also <a href="Sindx_Ps.html#pseudoprimes">pseudoprimes</a>
Carmichael numbers|, <a NAME="Carmichael_end">sequences related to (start):</a>
Carmichael's lambda function: A002322*, A011773
carryless arithmetic base  b, <a NAME="CARRYLESS">sequences related to (start):</a>
carryless arithmetic base 10, Boolean version: A169912, A169913, A169914
carryless arithmetic base 10, digital root version: A169908, A169910, A169911 (primes)
carryless arithmetic base 10, mod 10 version: A059729, A061909, A129967 & A169889 (squares), A168294, A168541, A169884, A169885 (cubes), A169886, A169890 (triangular numbers), A169973 (partitions)
carryless arithmetic base 10, mod 10 version: A169891, A169892, A169893, A169896, A169897, A169898, A169899 (divisor functions)
carryless arithmetic base 10, mod 10 version: A169894 (addition table), A059692 (multiplication table)
carryless arithmetic base 10, mod 10 version: A169904, A169905, A169906, A169907, A003893
carryless arithmetic base 10, mod 10 version: even numbers: A004520, A014263
carryless arithmetic base 10, mod 10 version: negative numbers: A055120
carryless arithmetic base 10, mod 10 version: primes: A169887, A169903, A163396, A169984, A143712, A144162
carryless arithmetic base 10, mod 10 version: see also A000689, A001148, A169916, A169917, A169918
carryless arithmetic base 10, mod 9 version: A169821, A169909, A029898
carryless arithmetic base 10: see also <a href="Sindx_Di.html#dismal">dismal arithmetic</a>
carryless arithmetic base 2: A000695 (squares), A048720 and A091257 (multiplication table), A014580 (primes), A091242 (composites)
carryless arithmetic base 3: A169999
carryless arithmetic base 4: A170985
carryless arithmetic base 5: A170986
carryless arithmetic base 6: A170987
carryless arithmetic base 7: A170988
carryless arithmetic base 8: A170989
carryless arithmetic base 9: A170990
carryless arithmetic base|  b, <a NAME="CARRYLESS_end">sequences related to (start):</a>
cascades of gates, <a NAME="cascades">sequences related to (start):</a>
cascades of gates: A005608 A005609 A005610 A005611 A005613 A005616 A005618 A005619 A005739 A005749
cascades of gates| <a NAME="cascades_end">sequences related to (start):</a>
caskets: A006901
casting out nines (digital root): A010888
Catalan , <a NAME="Catalan">sequences related to (start):</a>
Catalan constant: A006752, A014538
Catalan numbers : A000108*
Catalan numbers, 3-dimensional: A005789*
Catalan numbers, generalized: (1) A001003 A004148 A004149 A006629 A006630 A006631 A006632 A006633 A006634 A006635 A006636 A006637
Catalan numbers, generalized: (2) A023421 A023422 A023423 A023425 A023426 A023427 A023428 A023429 A023430 A023431 A023432 A023433
Catalan numbers, generalized: (3) A025242 A025748 A025749 A025750 A025751 A025752 A025753 A025754 A025755 A025756 A025757 A025758
Catalan numbers, generalized: (4) A025759 A025760 A025761 A025762 A025763 A053991
Catalan numbers: see also (1) A005807, A007317, A000957, A005568, A003046, A003047, A007595, A003150, A002996, A001453
Catalan numbers: see also (2) A051785
Catalan triangle: A009766, A008315, A028364, see also A002057.
Catalan triangle: Adamson's generalization: A116925
Catalan's conjecture: A002760*, A023057, A023055, A001597
Catalan: A051785
Catalan: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Catalan|, <a NAME="Catalan_end">sequences related to (start):</a>
categories, <a NAME="categories">sequences related to (start):</a>
categories, connected: A125698, A125699, A125700, A125702
categories, strongly connected: [sequences to be added]
categories: A125696, A125697, A125701
categories| <a NAME="categories_end">sequences related to (start):</a>
Cauchy numbers: A006232/A006233, A002657/A002790
Cayley's mistake: A000022*
Ce DIVIDER
Cebychev is spelled <a href="Sindx_Ch.html#Cheby">Chebyshev</a> throughout
cellular automata  , <a NAME="cell">sequences related to (start):</a>
cellular automata (01): A001317 A006447 A006977 A006978 A010760 A018189 A019332 A019539 A019540 A019541 A019542 A019543
cellular automata (02): A034384 A038183 A038184 A038185 A047999 A048705 A048706 A048709 A048710 A048883 A051023
cellular automata (03): A056219 A060546 A060547 A060548 A060549 A060550 A060551 A060552 A060553 A063467 A070886 A070887
cellular automata (04): A070909 A070950 A071022 A071023 A071024 A071025 A071026 A071027 A071028 A071029 A071030 A071031
cellular automata (05): A071032 A071033 A071034 A071035 A071036 A071037 A071038 A071039 A071040 A071041 A071042 A071043
cellular automata (06): A071044 A071045 A071046 A071047 A071048 A071049 A071050 A071051 A071052 A071053 A071054 A071055
cellular automata (07): A051023
cellular automata, 2-dimensional ( 1): A147562, A160117, A160118, A160410. A160411 [more to be added here]
cellular automata, 3-dimensional: A160119, A160379, A161340, A160428
cellular automata, Rule 022: A071029
cellular automata, Rule 028: A070909
cellular automata, Rule 030: A070950*, A051023, A070951, A070952*, A151929, A092539, A110266, A1102676, A094603, A094604, A094605, A074890, A110240, A100053
cellular automata, Rule 041: A095951
cellular automata, Rule 050: A071028
cellular automata, Rule 054: A071030, A118108, A118109
cellular automata, Rule 058: A071028
cellular automata, Rule 060: A047999, A001317, A138276, A075438
cellular automata, Rule 062: A071031
cellular automata, Rule 070: A071022
cellular automata, Rule 078: A071023
cellular automata, Rule 086: A071032, A074890
cellular automata, Rule 090: A070886*, A001316, A001317, A038183, A048705, A048706, A048709, A048710, A048711, A048713, A048757, A071042, A080263, A086839, A138276
cellular automata, Rule 092: A071024
cellular automata, Rule 094: A071033, A118101, A118102
cellular automata, Rule 102: A047999, A075439, A117998
cellular automata, Rule 110: A070887*, A071048, A071048 , A075437, A095950, A117999
cellular automata, Rule 114: A071028
cellular automata, Rule 118: A071034
cellular automata, Rule 122: A071028
cellular automata, Rule 124: A071025
cellular automata, Rule 126: A071035
cellular automata, Rule 150: A071036, A118110, A038184, A038185, A138276, A138277, A048705, A048706, A048709, A048710, A048711, A048712, A048714
cellular automata, Rule 156: A070909
cellular automata, Rule 158: A071037, A118171, A118172
cellular automata, Rule 178: A071028
cellular automata, Rule 182: A071038
cellular automata, Rule 186: A071028
cellular automata, Rule 188: A071026, A118173, A118174
cellular automata, Rule 190: A071039, A118111
cellular automata, Rule 198: A071022
cellular automata, Rule 214: A071040
cellular automata, Rule 220: A118175
cellular automata, Rule 225: A078176
cellular automata, Rule 230: A071027
cellular automata, Rule 242: A071028
cellular automata, Rule 246: A071041
cellular automata, Rule 250: A071028, A002450
cellular automata, Rule 252: A074890
cellular automata, see also <a href="Sindx_To.html#toothpick">toothpick sequences</a>
cellular automata, sequences related to, see also <a href="Sindx_Pri.html#primes">primes, transformed by cellular automata</a>
cellular automata| , <a NAME="cell_end">sequences related to (start):</a>
centered  polytope numbers, <a NAME="CENTRALCUBE">sequences related to (start):</a>
centered cube numbers, higher-dimensional (1): A008514, A008515, A008516, A036085, A036086, A036087, A036088 A036089, A036090, A036091
centered cube numbers, higher-dimensional (2): A036092, A036093, A036094, A036095, A036096, A036097, A036098, A036099, A036100, A036101, A036102
centered cube numbers: A005898*
centered cuboctahedral numbers: A005902
centered dodecahedral numbers: A005904
centered hexagonal numbers : A003215
centered icosahedral numbers: A005902
centered orthoplex numbers: A001846
centered pentagonal numbers: A005891
centered polygonal numbers (k*n^2-k*n+2)/2, for k =  1 and 2: A000124, A002061
centered polygonal numbers (k*n^2-k*n+2)/2, for k =  3 through 14 sides: A005448, A001844, A005891, A003215, A069099, A016754, A060544, A062786, A069125, A003154, A069126, A069127
centered polygonal numbers (k*n^2-k*n+2)/2, for k = 15 through 20 sides: A069128, A069129, A069130, A069131, A069132, A069133
centered polygonal numbers: A000124, A002061
centered square numbers : A001844
centered tetrahedral numbers: A005894*, A008498, A008499, A008500, A008501, A008502, A008503, A008504, A008505, A008506
centered triangular numbers : A005448
centered| polytope numbers, <a NAME="CENTRALCUBE_end">sequences related to (start):</a>
central binomial coefficients: see <a href="Sindx_Bi.html#binomial">binomial coefficients, central</a>
central factorial numbers , <a NAME="cfn">sequences related to (start):</a>
central factorial numbers, triangle of: A008955, A008956, A008957, A008958, A036969
central factorial numbers: A000596 A000597 A001819 A001820 A001821 A001823 A001824 A001825 A002453 A002454 A002455 A049033
central factorial numbers|, <a NAME="cfn_end">sequences related to (start):</a>
central polygonal numbers, see <a href="Sindx_Ce.html#CENTRALCUBE">centered polygonal numbers</a>
central trinomial coefficients: A002426*
centuries: see <a href="Sindx_Ca.html#calendar">calendar</a>
Ch DIVIDER
Chacon sequences: A049320*, A049321*
Chains:: A007047, A005603, A005602
challenge problems, see <a href="Sindx_Se.html#extend">sequences that need extending</a>
Champernowne , <a NAME="Champernowne">sequences related to (start):</a>
Champernowne constant: A033307*, A030167*, A058068, A058069, A007376, A033308
Champernowne sequence: A030190*, A030302
Champernowne|, <a NAME="Champernowne_end">sequences related to (start):</a>
change ringing: see <a href="Sindx_Be.html#bell_ringing">bell ringing</a>
character tables: see also <a href="Sindx_De.html#DEGIRREP">degrees of irreducible representations</a>
characteristic functions  , <a NAME="char_fns">sequences related to (start):</a>
characteristic functions (000): char fn   where    where   name of "chi_n=1"
characteristic functions (001):   chi    chi_n=1  chi_n=0
characteristic functions (002): A000007  A000004  A000027  all 0
characteristic functions (003): A000012  A001477  [empty]  natural numbers
characteristic functions (004): A000035  A005408  A005843  odd numbers
characteristic functions (005): A003849  A003622  A022342
characteristic functions (006): A004641  A086377  A081477
characteristic functions (007): A005171  A018252  A000040  nonprimes
characteristic functions (008): A005369  A002378  A078358  pronic numbers
characteristic functions (009): A005614  A022342  A003622
characteristic functions (010): A008966  A005117  A013929  squarefree
characteristic functions (011): A010051  A000040  A018252  primes
characteristic functions (012): A010052  A000290  A000037  squares
characteristic functions (013): A010054  A000217  A014132  triangular numbers
characteristic functions (014): A010055  A000961  A024619  prime powers
characteristic functions (015): A010056  A000045  A001690  Fibonacci numbers
characteristic functions (016): A010057  A000578  A007412  cubes
characteristic functions (017): A010058  A000108  A092459  Catalan numbers
characteristic functions (018): A010059  A001969  A000069  evil numbers
characteristic functions (019): A010060  A000069  A001969  odious numbers
characteristic functions (020): A011655  A001651  A008585  not mult 3
characteristic functions (021): A012245  A000142  A063992  factorials
characteristic functions (022): A014306  A145397  A000292  m(m+1)(m+2)6
characteristic functions (023): A014578  A007417  A145204
characteristic functions (024): A020987  A022155  NA
characteristic functions (025): A023531  A000096  A007401  m(m+3)2
characteristic functions (026): A023533  A000292  A145397  m(m+1)(m+2)6
characteristic functions (027): A033683  A104777  NA       odd squares mod 3 > 0
characteristic functions (028): A033684  A135556  NA       squares mod 3 > 0
characteristic functions (029): A035263  A003159  A036554
characteristic functions (030): A036987  A000225  NA
characteristic functions (031): A038189  A091067  A091072
characteristic functions (033): A057427  A000027  A000004  positive numbers
characteristic functions (034): A059448  A059009  A059010
characteristic functions (035): A059841  A005843  A005408  even numbers
characteristic functions (036): A063524  A000012  A087156  all 1
characteristic functions (037): A064911  A001358  A100959  semiprimes
characteristic functions (038): A065043  A028260  A026424  even number of prime factors
characteristic functions (039): A065202  A065201  A065200
characteristic functions (040): A065333  A003586  A059485  3-smooth
characteristic functions (041): A066247  A002808  A008578  composite numbers
characteristic functions (042): A066829  A026424  A028260  odd number of prime factors
characteristic functions (043): A072401  A004215  NA       of the form 4^m*(8k+7)
characteristic functions (044): A075802  A001597  A007916  perfect powers
characteristic functions (045): A075897  A048645  NA
characteristic functions (046): A079260  A002144  A137409  primes of form 4n+1
characteristic functions (047): A079261  A002145  A145395  primes of form 4n+3
characteristic functions (048): A079978  A008585  A001651  mult 3
characteristic functions (049): A079979  A008588  A047253  mult 6
characteristic functions (050): A079998  A008587  A047201  mult 5
characteristic functions (051): A080110  A080112  A080113
characteristic functions (052): A080111  A080113  A080112
characteristic functions (053): A080116  A014486  NA
characteristic functions (054): A080339  A008578  A002808  {1} union {primes}
characteristic functions (055): A080545  A006005  A065090  {1} union {odd primes}
characteristic functions (056): A080995  A001318  A118300  gen. pentagonal numbers
characteristic functions (057): A082784  A008589  A047304  mult 7
characteristic functions (058): A083187  A002379  NA       [ 3^n  2^n ]
characteristic functions (059): A083923  A057548  NA
characteristic functions (060): A083924  A072795  NA
characteristic functions (061): A085357  A003714  A004780  Fibbinary numbers
characteristic functions (062): A086299  A002473  A068191  7-smooth
characteristic functions (063): A088517  A001463  NA
characteristic functions (064): A089011  A005763  NA       Weyl
characteristic functions (065): A091225  A014580  NA
characteristic functions (066): A091247  A091242  NA
characteristic functions (067): A092248  A030230  A030231  even number of distinct prime factors
characteristic functions (068): A093709  A028982  A028983  squares or twice squares
characteristic functions (069): A093719  A047273  A047235  (mod 2)^(mod 3)
characteristic functions (070): A095076  A020899  A095096
characteristic functions (071): A095111  A095096  A020899
characteristic functions (072): A098108  A016754  NA
characteristic functions (073): A099104  A066680  NA       badly sieved numbers
characteristic functions (074): A099395  A007283  NA
characteristic functions (075): A101040  NA       NA       not more than 2 prime factors
characteristic functions (076): A101605  A014612  NA       exactly 3 prime factors
characteristic functions (077): A101637  A014613  NA       exactly 4 prime factors
characteristic functions (078): A102460  A000032  NA       Lucas numbers
characteristic functions (079): A103673  A103676  A103677  (factorial)
characteristic functions (080): A103674  A103678  A103679  (factorial)
characteristic functions (081): A103675  A103680  A103681  (factorial)
characteristic functions (082): A105349  A000129  NA       Pell numbers
characteristic functions (083): A107078  A013929  A005117  non unitary divisors
characteristic functions (084): A112526  A001694  A052485  powerful numbers
characteristic functions (085): A114986  A000201  A001950
characteristic functions (086): A118952  A118957  A118956
characteristic functions (087): A121262  A008586  A042968  mult 4
characteristic functions (088): A122255  A122254  A048136
characteristic functions (089): A122257  A005109  A122259  Pierpont primes
characteristic functions (090): A122261  A122260  NA       mult. closure of Pierpont primes
characteristic functions (091): A122895  A123240  NA       tau=Fibonacci
characteristic functions (092): A123927  A119885  NA       tau=Lucas
characteristic functions (093): A130638  A005237  NA       tau(n+1)=tau(n)
characteristic functions (094): A132138  A002977  A132142
characteristic functions (095): A133010  NA       NA
characteristic functions (096): A133011  NA       NA
characteristic functions (097): A133100  A085787  NA       gen. heptagonal numbers
characteristic functions (098): A133101  A057569  NA
characteristic functions (099): A133872  A042948  A042964  congruent 0 or 1 mod 4
characteristic functions (100): A136522  A002113  A029742  palindrome
characteristic functions (101): A137794  A073491  A073492  no prime gaps in fact.
characteristic functions (102): A139689  NA       NA       Chen
characteristic functions (103): A141260  A141259  NA
characteristic functions (104): A143731  A024619  A000961  more than 1 prime factor
characteristic functions (105): A145649  A000959  A050505 lucky numbers
characteristic functions (106): A156660  A005384  A138887  Sophie Germain primes
characteristic functions (107): A156659  A005385  A156657  safe primes
characteristic functions (108): A079559  A005187  A055938  range of  A005187
characteristic functions (109): A151774  A018900  A161989  numbers with binary weight 2
characteristic functions (110): A167392 A000041 A167376 partition numbers
characteristic functions (111): A167393 A000009 A167377 range of A000009
characteristic functions (112): A168046 A052382 A011540 zerofree numbers
characteristic functions (113): A166486 A042968 A008586 not a multiple of 4
characteristic functions (114): A011558 A047201 A008587 coprime to 5
characteristic functions (115): A097325 A047253 A008588 not a multiple of  6
characteristic functions (116): A109720 A047304 A008589 coprime to 7
characteristic functions (117): A168181 A047592 A008590 not a multiple of 8
characteristic functions (118): A168182 A168183 A008591 not a multiple of 9
characteristic functions (119): A168184 A067251 A008592 not a multiple of 10
characteristic functions (120): A145568 A160542 A008593 coprime to 11
characteristic functions (121): A168185 A168186 A008594 not a multiple of 12
characteristic functions (122): A054521 A169581 A169581
characteristic functions| , <a NAME="char_fns_end">sequences related to (start):</a>
characters of groups: A005368
characters, see also under <a href="Sindx_Sw.html#SYMMETRICGROUP">symmetric group</a>
Chebycheff is spelled <a href="Sindx_Ch.html#Cheby">Chebyshev</a> throughout
Chebychev is spelled <a href="Sindx_Ch.html#Cheby">Chebyshev</a> throughout
Chebyshev function theta(n): A035158, A057872, A083535
Chebyshev polynomials  , <a NAME="Cheby">sequences related to (start):</a>
Chebyshev polynomials of the first kind (T- or C- polynomials) ( 1): A001792 A001793 A001794 A002698 A005583 A005584 A006974 A006975 A006976 A007701 A008310 A008311
Chebyshev polynomials of the first kind (T- or C- polynomials) ( 2): A020537 A020538 A020539 A039991 A053120 A001105 A002415 A002492 A005585 A040977 A050486 A008314
Chebyshev polynomials of the first kind (T- or C- polynomials) ( 3): A053347 A054322 A054323 A054324 A054325 A054326 A054327 A054328 A054329 A054330 A054331 A054332
Chebyshev polynomials of the first kind (T- or C- polynomials) ( 4): A054333 A054334 A001653 A070997 A001091 A072256 A001075 A001541 A005248 A003501 A056854 A056918
Chebyshev polynomials of the first kind (T- or C- polynomials) ( 5): A057076 A001079 A023038 A011943 A023039 A001081 A001085 A077235 A077236 A077237 A077238 A077239
Chebyshev polynomials of the first kind (T- or C- polynomials) ( 6): A077240 A077242 A077244 A077246 A077248 A077250 A077409 A077411 A001570 A001835 A056771 A077417
Chebyshev polynomials of the first kind (T- or C- polynomials) ( 7): A077420 A077422 A077424 A077428 A078356 A078363 A078365 A078367 A078369 A000129 A001333 A001076
Chebyshev polynomials of the first kind (T- or C- polynomials) ( 8): A001077 A005667 A005668 A041025 A078986
Chebyshev polynomials of the first kind (T- or C- polynomials) ( 9): A090733 A090248 A090251 A001519 A097308-A097316 A097725-A097742 A097765-A097784 A097826-A097835
Chebyshev polynomials of the first kind (T- or C- polynomials) (10): A090729 A090731 A097837 A097838 A097840-A097845 A098244 A098246 A098247
Chebyshev polynomials of the first kind (T- or C- polynomials) (11): A098249 A098250 A098252 A098253 A098255 A098256 A098258 A098259 A098261 A098262 A098291 A098292 A078070 A004146 A007877 A054493 A011655 A011655 A049683
Chebyshev polynomials of the first kind (T- or C- polynomials) (12): A098249 A049684 A095004 A098296-A098299 A098300-A098310 A005386 A092936 A099270-A099273 A099275-A099279 A099365-A099374 A099368 A099397 A001108 A007598 A079291
Chebyshev polynomials of the second kind (U- or S- polynomials) ( 1): A001787 A001788 A001789 A002605 A003472 A008312 A008313 A008315 A010892 A020540 A020541 A020542
Chebyshev polynomials of the second kind (U- or S- polynomials) ( 2): A030195 A030191 A030221 A030192 A030240 A049310 A049347 A053117 A053118 A053119 A053121 A002700
Chebyshev polynomials of the second kind (U- or S- polynomials) ( 3): A053122 A051323 A053124 A053125 A053126 A053127 A053128 A053129 A053130 A053131 A001653 A001109
Chebyshev polynomials of the second kind (U- or S- polynomials) ( 4): A054450 A001090 A001353 A018913 A004187 A004254 A004189 A001834 A002878 A002315 A056594
Chebyshev polynomials of the second kind (U- or S- polynomials) ( 5): A057076 A057077 A057078 A057079 A057080 A057081 A001906 A056854 A056918
Chebyshev polynomials of the second kind (U- or S- polynomials) ( 6): A057083 A057084 A057085 A057086 A057087 A057088 A057089 A057090 A057091 A057092 A057093 A057094
Chebyshev polynomials of the second kind (U- or S- polynomials) ( 7): A025170 A025171 A004190 A001653 A070997 A001091 A072256 A054320 A004189 A001075 A005248 A003501
Chebyshev polynomials of the second kind (U- or S- polynomials) ( 8): A054491 A054488 A023038 A004191 A007655 A011943 A049660 A023039 A001081 A001085 A075843 A077234
Chebyshev polynomials of the second kind (U- or S- polynomials) ( 9): A077237 A077413 A077241 A077243 A077245 A077247 A077249 A077251 A077410 A077412
Chebyshev polynomials of the second kind (U- or S- polynomials) (10): A028230 A001835 A029547 A046176 A029548 A077416 A077418 A077420 A077421 A077422 A077423
Chebyshev polynomials of the second kind (U- or S- polynomials) (11): A077424 A077428 A078356 A078362 A078363 A078364 A078365 A078366 A078367 A078368 A078369
Chebyshev polynomials of the second kind (U- or S- polynomials) (12): A000129 A001333 A001076 A001077 A005667 A005668 A041025 A078986 A078987
Chebyshev polynomials of the second kind (U- or S- polynomials) (13): A092499 A090733  A090248 A090251 A001519 A078922 A092521 A092420 A076765 A076139 A049664
Chebyshev polynomials of the second kind (U- or S- polynomials) (14): A097726 A097727 A097729 A097730 A097732 A097733 A097735 A097736 A097738 A097739 A097741 A097742 A097766 A097767 A097769 A097770
Chebyshev polynomials of the second kind (U- or S- polynomials) (15): A090729 A090731 A097834-A097845 A098244-A098263 A098291 A098292 A078070 A004146 A007877 A099368 A041041 A052918 A054413 A054493 A098301
Chebyshev polynomials: see also A002680
Chebyshev polynomials| , <a NAME="Cheby_end">sequences related to (start):</a>
checkers, <a NAME="checkers">sequences related to (start):</a>
checkers: A055213, A133046, A133047
checkers| <a NAME="checkers_end">sequences related to (start):</a>
Chernoff sequence: A006939*, A051357
chess, number of  games , <a NAME="chess">sequences related to (start):</a>
chess, number of  games , definition: position = position with castling and en passant information, diagram = position without castling and en passant information
chess, number of  games: A048987* A079485 A006494 A089956
chess, number of  games: see also A007747 A007545 A007577
chess, number of diagrams: A019319* A090051
chess, number of positions: A083276* A057745 A089957
chess, number of| games , <a NAME="chess_end">sequences related to (start):</a>
chessboard, halving a: A003155
chessboard, quartering a: A006067, A003213
Chinese: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
chord diagrams, <a NAME="CHORD">sequences related to (start):</a>
chord diagrams: (1) A007293 A007473 A007474 A007769 A014595 A018191 A018192 A018193 A018225 A022489 A022490 A022491 A022492
chord diagrams: (2) A022493 A022494 A054499 A054938
chord diagrams| <a NAME="CHORD_end">sequences related to (start):</a>
chords in a circle: A001006, A054726, A006533, A000124
chords in a circle: see also <a href="Sindx_Pol.html#Poonen">Poonen-Rubinstein paper</a>
Chowla sequence: see <a href="Sindx_Me.html#Mian_Chowla">Mian-Chowla sequences</a>
Chowla's function: sum of divisors excluding 1 and n: A048050*, A002954
chromatic number of graphs: A006670, A006671
chromatic number of surface: A000703*, A000934*, A059103
Chvatal conjecture, <a NAME="Chvatal">sequences related to (start):</a>
Chvatal conjecture: A007008
Chvatal conjecture| <a NAME="Chvatal_end">sequences related to (start):</a>
circle problem: A057655*
circle product: A101330
circles, number of ways of arranging: A000081
circuits: A002631, A002632
Cl DIVIDER
class numbers , <a NAME="CLASS">sequences related to (start):</a>
class numbers, (1): A000003, A001985, A001987, A001989, A001991, A002141, A002143, A003646, A003647
class numbers, (2): A003648, A003649, A003650, A003651, A003652, A005472, A005474, A005847, A005848*, A006641
class numbers, (3): A006642, A006643, A014599, A014600, A029702, A039958
class numbers, of fields (1):: A003652, A003649, A003650, A003651, A003639, A006642, A003638, A006643
class numbers, of fields (2):: A003636, A003637, A005472, A001989, A001987
class numbers, of fields: see also <a href="Sindx_Cy.html#CYCLOTOMIC">cyclotomic fields</a>
class numbers, of fields: see also <a href="Sindx_Qua.html#quadfield">quadratic fields</a>
class numbers, of imaginary quadratic fields, see <a href="Sindx_Qua.html#quadfield">quadratic fields, imaginary</a>
class numbers, of imaginary quadratic fields: see also A081319 A060649 A038552 A046125
class numbers, of Q(sqrt -n), n squarefree: A000924*
class numbers, of quadratic forms:: A003646, A003647, A006641, A000003, A003648
class numbers:: A003173, A002143, A000233, A005847, A000362, A002052, A006203, A000508
class numbers|, <a NAME="CLASS_end">sequences related to (start):</a>
classes, switching: A002854*, A006536
classifications of n things: A005646
Clifford group, <a NAME="cliff">sequences related to (start):</a>
Clifford group, Molien series for: A008621, A008718, A024186 (real); A008620, A028288, A039946, A051354 (complex)
Clifford group, orders of: A001309* (real), A003956* (complex)
Clifford group: see also A014115, A014116, A027633
Clifford group| <a NAME="cliff_end">sequences related to (start):</a>
cliques: A005289
clock sequences: A028354, A028355, A028356, A068962, A007980
closed under certain affine transformations: see <a href="Sindx_K.html#KLARNER">Klarner-Rado sequences</a>
closure systems: A047684
clouds: A001205*
cluster series, <a NAME="cluster">sequences related to (start):</a>
cluster series:: A003204, A003199, A003203, A003212, A003202, A003198, A003208, A003211, A003201, A003210, A003197, A003207, A003200, A003209, A003206, A003205
cluster series| <a NAME="cluster_end">sequences related to (start):</a>
Clusters:: A007174, A007172, A007175, A007173
Coa DIVIDER
coconut problem: A002021*, A002022*
codes, binary, linear  <a NAME="codes_binary_linear">sequences related to (start):</a>
codes, binary, linear: see also <a href="Sindx_Go.html#Golay">Golay codes</a>
codes, binary, linear: see also A034327, A034328, A034329
codes, binary, linear: total number of different [n,k] codes (summed over k): A006116
codes, binary, linear: total number of inequivalent indecomposable projective [n,k] codes (summed over k): A076838
codes, binary, linear: total number of inequivalent indecomposable [n,k] codes with no column of zeros (summed over k): A076836
codes, binary, linear: total number of inequivalent projective [n,k] codes (summed over k): A076834
codes, binary, linear: total number of inequivalent [n,k] codes (summed over k): A076766
codes, binary, linear: total number of inequivalent [n,k] codes containing no column of zeros (summed over k): A034343
codes, binary, linear: triangle of number of different [n,k] codes: A022166
codes, binary, linear: triangle of number of inequivalent indecomposable projective [n,k] codes: A076837
codes, binary, linear: triangle of number of inequivalent indecomposable [n,k] codes with no column of zeros: A076835
codes, binary, linear: triangle of number of inequivalent projective [n,k] codes: A076833
codes, binary, linear: triangle of number of inequivalent [n,k] codes containing no column of zeros: A076832
codes, binary, linear: triangle of number of inequivalent [n,k] codes: A076831
codes, binary, nonlinear: A039754, A000616
codes, binary, notation: [n,k] denotes a linear code of length n and dimension k, (n,k) a nonlinear code of length n containing k codewords.
codes, binary| linear  <a NAME="codes_binary_linear_end">sequences related to (start):</a>
codes, covering , <a NAME="covcod">sequences related to (start):</a>
codes, covering, directed: A066000, A019436
codes, covering: A060438* A060439* A060440* A000983* A060450* A060451* A029866 A029865 A029867 A004044
codes, covering: see also <a href="Sindx_Cor.html#covnum">covering numbers</a>, <a href="Sindx_Cor.html#COVERS">covers of an n-set</a>
codes, covering|, <a NAME="covcod_end">sequences related to (start):</a>
codes, for correcting deletions: A000016, A057591
codes, for correcting errors on Z-channel: A010101
codes, for correcting transposition errors: A057608, A057657
codes, maximal size of binary constant weight, see <a href="Sindx_Aa.html#Andw">A(n,d,w)</a>
codes, maximal size of binary, see <a href="Sindx_Aa.html#And">A(n, d)</a>
codes, mixed binary/ternary: A050142, A057574-A057584
codes, see also (1):: A005861, A005857, A005858, A005862, A005866, A005854, A005863, A005855, A005859, A005865
codes, see also (2):: A005851, A005860, A005856, A004037, A005852, A000983, A005853, A004038, A001839, A005864, A004039, A001843, A004035, A004036
codes, self-dual, <a NAME="codes_self_dual">sequences related to (start):</a>
codes, self-dual, enumeration of: A003178*, A003179*, A028362*, A028363*, A001646*, A001647*
codes, self-dual, extremal of length 72: A018236*
codes, self-dual, see also (1): A002521 A005137 A007980 A008647 A014487 A016729 A018236 A018237 A027628 A028249
codes, self-dual, see also (2): A028288 A028309 A028344 A028345 A030062 A030331 A034414 A034415
codes, self-dual| <a NAME="codes_self_dual_end">sequences related to (start):</a>
coding a recurrence: A005204
Coding Fibonacci numbers:: A005203, A005205
Coefficients, for central differences, A002677, A002676, A002672, A002673, A002675
Coefficients, for extrapolation, A002738, A002737, A002739
Coefficients, for numerical differentiation, A002546, A002552, A002545, A002551, A002702, A002554, A002701, A002547, A002548, A002544, A002549, A002550, A002553, A002555
Coefficients, for numerical integration, A002685, A002209, A002208, A002686, A002195, A002196, A002197, A006685, A002198
Coefficients, for repeated integration (1):: A002397, A002404, A002398, A002405, A002682, A002401, A002400, A002689, A002688, A002684
Coefficients, for repeated integration (2):: A002683, A002687, A002406, A002402, A002403, A002399, A002681
Coi DIVIDER
coincidences among binomial coefficients: A003015
coins , <a NAME="COINS">sequences related to (start):</a>
coins needed to make change: see <a href="Sindx_Mag.html#change">making change</a>
coins, tossing: A006857
coins: (1) A005169 A005170 A007673 A011542 A019591 A033623 A047998 A053344 A054016 A054043 A054044 A054045
coins: (2) A054046
coins|, <a NAME="COINS_end">sequences related to (start):</a>
Collatz problem: see <a href="Sindx_3.html#3x1">3x+1 problem</a>
collinear: A003142 A049615 A055674 A055675
Colombian numbers: A003052*, A006378, A036233
coloring , <a NAME="coloring">sequences related to (start):</a>
coloring a cube: A006550, A006853, A006854, A000543, A060530, A047780
coloring a map: see <a href="Sindx_Map.html#MAPS">map, coloring</a>
coloring a triangle: A006527
coloring an m X n grid: A068253, A047938 (more to be added)
colorings: (1) A000543 A000545 A006008 A006342 A006853 A006854 A007687 A007688 A047937 A047938 A047939 A047940
colorings: (2) A047941 A047942 A047943 A047944 A047945 A048246
coloring|, <a NAME="coloring_end">sequences related to (start):</a>
colossally abundant numbers: A004490
colouring is spelled coloring in the OEIS, which uses US rather than English spelling
Com DIVIDER
combinations, <a NAME="combinations">sequences related to (start):</a>
combinations, circular: A006499
combinations: A006499 A006500 A007785 A030662 A037031 A037255 A049022
combinations| <a NAME="combinations_end">sequences related to (start):</a>
comparative probability orderings: A005806
comparisons: A001768 A001855 A003071 A003075 A006282 A036604
complements , <a NAME="complements">sequences related to (start):</a>
complements of: Bell numbers, A092460; Catalan numbers, A092459; cubes, A007412; evil numbers, A000069; Fibonacci numbers, A001650; odious numbers, A001969; powers of 2, A057716; primes, A018252 and A002808; squares, A000037; triangular numbers, A014132
complements|, <a NAME="complements_end">sequences related to (start):</a>
complete graph conjecture, <a NAME="complete_graph_conjecture">sequences related to (start):</a>
complete graph conjecture: A000933*
complete graph conjecture| <a NAME="complete_graph_conjecture_end">sequences related to (start):</a>
complete rulers: see <a href="Sindx_Per.html#perul">perfect rulers</a>
complexity  , <a NAME="complexity">sequences related to (start):</a>
complexity, of graphs: A006235 A006237 A006238 A007341 A007342
complexity, of n (this has been defined in several different ways): A005208, A005245*, A025280, A099053
complexity, of n: see also A003037, A005421, A005520
complexity, see also A036988
complexity| <a NAME="complexity_end">sequences related to (start):</a>
composite numbers, <a NAME="compositenumbers">sequences related to (start):</a>
composite numbers: A002808*
composite numbers: see also A005381
composite numbers| <a NAME="compositenumbers_end">sequences related to (start):</a>
compositions , <a NAME="comp">sequences related to (start):</a>
compositions of n, explicitly: A066099, A124734, A108244, A108730
compositions of n, number of: A000079*, A126198*, A048004, A048887, A092129, A092921, A000073, A000078
compositions, into Fibonacci numbers: see <a href="Sindx_Fi.html#Fibonacci">Fibonacci numbers, number of ways to write n as a sum of</a>
compositions: (1) A000100 A000102 A003242 A006456 A006979 A006980 A023358 A023360 A023361 A032020 A039911 A039912
compositions: (2) A048887 A055794 A055800 A055801 A000079*
compositions: see also under <a href="Sindx_Par.html#part">partitions</a>
compositions|, <a NAME="comp_end">sequences related to (start):</a>
compositorial numbers: A036691*, A049650, A060880
compressibility: A007236
Comtet, <STRONG>Advanced Combinatorics</STRONG>, <a href="comtet.html"><STRONG>sequences found in</STRONG></a>
Con DIVIDER
concatenate divisors: A037278*
concatenate prime factors: A037276*, A048595* (base 2)
concatenation of all numbers up through n, see <a href="Sindx_N.html#concat">here</a>
concatenation:  There is no universally accepted symbol for concatentaion!
concatenation: 'a1 followed by a2' is used in A034821.
concatenation: a1 # a2 is used in A133344
concatenation: a1 & a2 and a1 + a2 may also be used.
concatenation: a1 . a2 is used in A115437 (as in Perl).
concatenation: a1 // a2 is used in A115429 (as in Fortran).
concatenation: a1 : a2 is used in A089591.
concatenation: a1 U a2 is used in A165784.
concatenation: a1 ^ a2 is used in A091975 (cf. A091844).
concatenation: a1a2 is used in A089710.
concatenation: a1_a2 is used in A153164.
concatenation: Maple uses parse(cat(a1, a2, ..., an)).
concatenation: Mathematica uses FromDigits[Join[IntegerDigits[a1], IntegerDigits[a2], ..., IntegerDigits[an]]] or ToExpression[StringJoin[ToString[a1], ToString[a2], ..., ToString[an]]] or FromDigits["a1"<>"a2"<>...<>"an"].
concatenation: Pari uses eval(Str(a1, a2, ..., an)).
conditionally convergent series: A002387, A092324, A092267, A092753
conference matrices: see <a href="Sindx_Mat.html#MATRICES">matrices, conference</a>
configurations  , <a NAME="configurations">sequences related to (start):</a>
configurations (combinatorial or geometrical): A001403* A099999 A023994 A005787 A000698 A100001 A098702 A098804 A098822 A098841 A098851 A098852 A098854
configurations| , <a NAME="configurations_end">sequences related to (start):</a>
Congruence property:: A002703, A002704, A002705
Congruences:: A001915, A001916
congruent numbers: A003273*, A006991, A016090
congruent products between domains N and GF(2)[X] , sequences defined by <a NAME="CongruCrossDomain">(start):</a> (Here * stands for ordinary multiplication (A004247), and X means carryless GF(2)[X] multiplication (A048720))
congruent products between domains N and GF(2)[X],  3*n = 3Xn (A003714), 3*n = 7Xn (A048717), 3*n = 7Xn and 5*n = 5Xn (A048719)
congruent products between domains N and GF(2)[X],  5*n = 5Xn (A048716), 7*n = 7Xn (A048715), 7*n = 11Xn (A115770)
congruent products between domains N and GF(2)[X],  9*n = 9Xn (A115845), 9*n = 25Xn (A115801), 9*n = 25Xn, but 17*n is not 49Xn (A115811)
congruent products between domains N and GF(2)[X], 11*n = 31Xn (A115803), 13*n = 21Xn (A115772), 13*n = 29Xn (A115805)
congruent products between domains N and GF(2)[X], 15*n = 15Xn (A048718), 15*n = 23Xn (A115774), 15*n = 27Xn (A115807)
congruent products between domains N and GF(2)[X], 17*n = 17Xn (A115847), 17*n = 49Xn (A115809), 19*n = 55Xn (A115874)
congruent products between domains N and GF(2)[X], 21*n = 21Xn (A115422), 31*n = 31Xn (A115423), 33*n = 33Xn (A114086)
congruent products between domains N and GF(2)[X], 41*n = 105Xn (A115876), 49*n = 81Xn (A114384), 57*n = 73Xn (A114386)
congruent products between domains N and GF(2)[X], 63*n = 63Xn (A115424)
congruent products between domains N and GF(2)[X], array of solutions for n*k = A065621(n) X k: A115872
congruent products between domains N and GF(2)[X], see also A115857, A115871.
congruent products between domains N and GF(2)[X]: see also <a href="Sindx_Con.html#CongruXOR">congruent products under XOR</a>
congruent products between domains N and GF(2)[X]|, sequences defined by <a NAME="CongruCrossDomain_end">(start):</a> (Here * stands for ordinary multiplication (A004247), and X means carryless GF(2)[X] multiplication (A048720))
congruent products under XOR , sequences defined by <a NAME="CongruXOR">(start):</a>
congruent products under XOR,  3*n = 2*n XOR n (A003714), 5*n = 4*n XOR n (A048716), 5*n = 3*n XOR 2*n (A115767)
congruent products under XOR,  7*n = 6*n XOR n (A048715), 7*n = 5*n XOR 2*n (A115813), 7*n = 4*n XOR 3*n (A048715)
congruent products under XOR, 11*n = 10*n XOR n (A115793), 11*n = 9*n XOR 2*n (A115795), 11*n = 8*n XOR 3*n (A115797)
congruent products under XOR, 11*n = 7*n XOR 4*n (A115799), 11*n = 6*n XOR 5*n (A115827), 15*n = 14*n XOR n (A048718)
congruent products under XOR, 17*n = 16*n XOR n (A115847), 17*n = 13*n XOR 4*n (A115817), 19*n = 15*n XOR 4*n (A115819)
congruent products under XOR, 21*n = 20*n XOR n (A115422), 21*n = 15*n XOR 6*n (A115821), 21*n = 11*n XOR 10*n (A115829)
congruent products under XOR, 23*n = 13*n XOR 8*n (A115823), 25*n = 16*n XOR 9*n (A115831), 33*n = 17*n XOR 16*n (A115833)
congruent products under XOR, 31*n = 30*n XOR n (A115423), 33*n = 32*n XOR n (A114086), 63*n = 62*n XOR n (A115424)
congruent products under XOR, 9*n = 8*n XOR n (A115845), 9*n = 7*n XOR 2*n (A115815)
congruent products under XOR, least k such that n XOR n*2^k = n*(2^k + 1), A116361
congruent products under XOR: see also <a href="Sindx_Con.html#CongruCrossDomain">congruent products between domains N and GF(2)[X]</a>
congruent products under XOR|, sequences defined by <a NAME="CongruXOR_end">(start):</a>
conjecture, <a NAME="conjectures">sequences related to various conjectures (start):</a>
conjecture, curling number: A094004
conjectured formulas: see A005158, A005160, A005162, A005163, A005164 (there are conjectured formulas for these sequences which may still be open problems)
conjectured sequences (00): The following sequences contain one or more terms that are only conjectured values.
conjectured sequences (01): In some cases the conjectured terms are only mentioned in the comments.
conjectured sequences (02): This list was last revised Jun 19 2008. It is surely incomplete, and by the time you look at them their status may have changed.
conjectured sequences (03): Suggestions for additions to or deletions from this list will be welcomed - njas(AT)research.att.com
conjectured sequences (04): A008892, A098007, A063769 and other sequences related to the "aliquot divisors" problem
conjectured sequences (05): A065083, A090315, A104885, A121091, A051346, A115016
conjectured sequences (06): A075788, A075789, A075790, A075791, A083435, A086548, A087318, A087319, A088126, A090315, A092959
conjectured sequences (07): A000373, A002149, A014595, A014596, A019450, A019459, A020999,
conjectured sequences (08): A022495-A022498, A023054, A023108, A038552, A046125, A052131,
conjectured sequences (09): A066426, A066435, A066450, A066510, A066746, A066817, A067579,
conjectured sequences (10): A068591, A071071, A071887, A072023, A072326, A072540, A074980,
conjectured sequences (11): A074981, A078693, A078754, A078869, A079098, A079398, A079611,
conjectured sequences (12): A080131, A080133, A080134, A080761, A080762, A085508, A086058,
conjectured sequences (13): A086748, A087092, A088910, A091305, A092372-A092382, A096340,
conjectured sequences (14): A098860, A099118, A099119, A105233, A105600, A105601, A108795,
conjectured sequences (15): A110000, A110108, A110172, A110222, A110223, A110312, A110356,
conjectured sequences (16): A112647, A112799, A112826, A118278-A118285, A120414*, A121069,
conjectured sequences (17): A121346, A121507, A121508, A119479, A009287, A090997, A090987,
conjectured sequences (18): A004137, A048873, A056287, A059813, A059817, A059818, A065106, A065107, A081082, A084619, A090659, A099260, A117342,
conjectured sequences (19): A000954, A000974, A007008 (?),  A023189-A023193, A036462-A036463, A037018, A039508, A039515, A051522, A056636, A076853, A105170, A118371.
conjectured sequences (20): A080803, A124484, A093486, A140394, A007323
conjectures: see also <a href="Sindx_Ar.html#Artin">Artin's conjecture</a>; <a href="Sindx_Ca.html#Catalan">Catalan's conjecture</a>; <a href="Sindx_Ch.html#Chvatal">Chvatal conjecture</a>; <a href="Sindx_Com.html#complete_graph_conjecture">complete graph conjecture</a>; <a href="Sindx_Ge.html#Gilbreath">Gilbreath's conjecture</a>; <a href="Sindx_Go.html#Goldbach">Goldbach conjecture</a>; <a href="Sindx_He.html#Heawood">Heawood conjecture</a>; <a href="Sindx_K.html#Kummer">Kummer's conjecture</a>; <a href="Sindx_Lc.html#Legendre">Legendre's conjecture</a>; <a href="Sindx_Me.html#Mertens">Mertens's conjecture</a>; <a href="Sindx_Per.html#IntegerPermutation">permutations of the integers, conjectured</a>; <a href="Sindx_Pol.html#Polyaconjecture">Polya's conjecture</a>
conjectures: see also <a href="Sindx_Cu.html#curling_numbers">curling number conjecture</a>
conjectures: see also <a href="Sindx_Se.html#extend">sequences that need extending</a>
conjecture| <a NAME="conjectures_end">sequences related to various conjectures (start):</a>
conjugacy classes of groups: see <a href="Sindx_Gre.html#groups">groups, conjugacy classes</a>
connected regular graphs, see <a href="Sindx_Gra.html#graphs">graphs, regular connected</a>
connecting 2n points: A006605
Connell sequence: A001614*
Consecutive:: A002308, A001223, A007610, A002307, A007513, A000236, A007667, A006889, A001033, A006055
Consistent:: A005779, A001225
constant, Robbins: A073012
constructing numbers from other numbers and the operations of addition, subtraction, etc: see under <a href="Sindx_Fo.html#4x4">four 4's problem</a>
contexts: A047684
CONTINUANT transform: see <a href="transforms.txt">Transforms</a> file
continuant: A072347
continued cotangents, <a NAME="continued_cotangents">sequences related to (start):</a>
continued cotangents:: A002668, A006266, A006268, A002667, A006267, A002666, A006269
continued cotangents| <a NAME="continued_cotangents_end">sequences related to (start):</a>
continued fractions  , <a NAME="confC">sequences related to (start):</a>
continued fractions (1):: A003285, A006466, A002951, A003417, A002852, A002211, A006083, A006839, A002947, A002948
continued fractions (2):: A002946, A001685, A001686, A004200, A002665, A006271, A001684, A006085, A002945, A007515
continued fractions (3):: A002937, A001112, A006464, A003118, A001203, A006273, A006270, A002949, A006467, A003117
continued fractions (4):: A006221, A002950, A001204, A006084, A005483, A006518, A005147, A006272, A006274, A005146, A006465
continued fractions for constants: (2/Pi)*Integral(sin(x)/x, x=0..Pi) (A036791), 0.12112111211112... A042974 (A056030) Product_{k>=1} (1-1/2^k) (A048652)
continued fractions for constants: 2^(1/2) etc.: see below under: continued fractions for constants: square roots of 2, etc.
continued fractions for constants: 2^(1/3) (A002945), 3^(1/3) (A002946), 4^(1/3) (A002947), 5^(1/3) (A002948), 6^(1/3) (A002949), 7^(1/3) (A005483), cube root of non-cubes 9+n to 100 (A010239, A010240, etc)
continued fractions for constants: 2^(1/3)+sqrt(3) (A039923), BesselK(1,2)/BesselK(0,2) (A051149), Catalan's constant (A014538)
continued fractions for constants: 2^(1/5) (A002950), 3^(1/5) (A003117), 4^(1/5) (A003118), 5^(1/5) (A002951)
continued fractions for constants: Champernowne (A030167), Conway's (A014967), Copeland-Erdos (A030168), Euler's gamma (A002852)
continued fractions for constants: e (A003417), e/2 (A006083), e/3 (A006084), e/4 (A006085), e^2 (A001204), e^3 (A058282)
continued fractions for constants: e^Pi (A058287), e^pi - pi (A018939), (e+1)/3 (A028360), (e-1)/(e+1) (A016825), i^i = exp(-Pi/2) (A049007)
continued fractions for constants: Fransen-Robinson (A046943), GAMMA(1/3) (A030651), GAMMA(2/3) (A030652), Integral(sin(x)/x, x=0..Pi) (A036790)
continued fractions for constants: golden ratio (A000012)
continued fractions for constants: Khintchine's (A002211), LambertW(1) (A030179), Lehmer's (A002665), Liouville's A012245 (A058304), Niven's (A033151)
continued fractions for constants: ln(2+n) to ln(100) (A016730+n), ln((2n+1)/2) to ln(99/2) (A016528+n)
continued fractions for constants: M(1,sqrt(2)) (A053003), 1 / M(1,sqrt(2)) (A053002), 1 +1/(e +1/(e^2 +..)) (A055972), 2*cos(2*Pi/7) (A039921)
continued fractions for constants: Otter's rooted tree A000081 (A051492), Thue-Morse (A014572), Tribonacci constant (A019712, A058296)
continued fractions for constants: Pi (A001203), 2 Pi (A058291), Pi/2 (A053300), Pi^2 (A058284), Pi^e (A058288), pi+e (A058651)
continued fractions for constants: sqrt(2Pi) (A058293), sqrt(Pi) (A058280), sqrt(e) (A058281)
continued fractions for constants: sqrt(3) - 1: A134451, A048878/A002530
continued fractions for constants: sqrt(3): A040001, A002531/A002530
continued fractions for constants: square roots of 17 (A040012), 18 (A040013), 19 (A010124), 20 (A040015), 21 (A010125), 22 (A010126), 23 (A010127), 24 (A040019), 26 (A040020), 27 (A040021), 28 (A040022), 29 (A010128),
continued fractions for constants: square roots of 2 (A040000 and A001333/A000129), 3 (A040001), 5 (A040002), 6 (A040003), 7 (A010121), 8 (A040005), 10 (A040006), 11 (A040007), 12 (A040008), 13 (A010122), 14 (A010123), 15 (A040011),
continued fractions for constants: square roots of 30 (A040024), 31 (A010129), 32 (A010130), 33 (A010131), 34 (A010132), 35 (A040029), 37 (A040030), 38 (A040031), 39 (A040032), 40 (A040033), 41 (A010133), 42 (A040035),
continued fractions for constants: square roots of 43 (A010134), 44 (A040037), 45 (A010135), 46 (A010136), 47 (A010137), 48 (A040041), 50 (A040042), 51 (A040043), 52 (A010138), 53 (A010139), 54 (A010140), 55 (A010141),
continued fractions for constants: square roots of 56 (A040048), 57 (A010142), 58 (A010143), 59 (A010144), 60 (A040052), 61 (A010145), 62 (A010146), 63 (A040055), 65 (A040056), 66 (A040057), 67 (A010147), 68 (A040059),
continued fractions for constants: square roots of 69 (A010148), 70 (A010149), 71 (A010150), 72 (A040063), 73 (A010151), 74 (A010152), 75 (A010153), 76 (A010154), 77 (A010155), 78 (A010156), 79 (A010157), 80 (A040071),
continued fractions for constants: square roots of 82 (A040072), 83 (A040073), 84 (A040074), 85 (A010158), 86 (A010159), 87 (A040077), 88 (A010160), 89 (A010161), 90 (A040080), 91 (A010162), 92 (A010163), 93 (A010164),
continued fractions for constants: square roots of 94 (A010165), 95 (A010166), 96 (A010167), 97 (A010168), 98 (A010169), 99 (A010170), etc. (square roots of numbers bigger than 100 have been omitted)
continued fractions for constants: Sum_{n>=0} 1/2^(2^n) (A007400), Sum_{k>=2} 2^(-Fibonacci(k)) (A006518), Sum_{m>=0} 1/(2^2^m - 1) (A048650)
continued fractions for constants: tan(1) (A009001), tan(1/n) n=2 to 10 (A019423+n)
continued fractions for constants: Trott's (A039663), Wallis' number (A058297), Wirsing's (A007515), prime constant (A051007), root of x^5-x-1 (A039922)
continued fractions for constants: zeta(2) = Pi^2/6 (A013679), zeta(3) (A013631), zeta(4) (A013680)
continued fractions, for sqrt(n), length of period: A003285*, A097853
continued fractions|, <a NAME="confC_end">sequences related to (start):</a>
contours: A006021
convenient numbers: A000926
conventions in OEIS: see <a href="Sindx_Sp.html#spell">spelling and notation</a>
convergents  , <a NAME="convergents">sequences related to (start):</a>
convergents (1):: A002363, A007676, A002356, A005663, A006279, A002355, A005664, A002358, A002795, A002353, A002360, A007509, A005484, A002364
convergents (2):: A007677, A002351, A002357, A002354, A002794, A001517, A002485, A002352, A002359, A002361, A005668, A002362, A002119, A002486, A005485
convergents| <a NAME="convergents_end">sequences related to (start):</a>
convert from base 10 to base n (or vice versa): A006937 A023372 A023378 A023383 A023387 A023390 A008557 A023392 A010692
convert from decimal to binary: A006937, A006938
convex lattice polygons: A063984, A070911, A089187
convolution , <a NAME="convolution">sequences related to (start):</a>
convolution of natural numbers :: A007466
convolution of triangular numbers :: A007465
Convolutional codes:: A007223, A007224, A007225, A007227, A007226, A007228, A007229
Convolutions:: A007477, A006013, A001938, A000385, A005798, A007556
Convolved Fibonacci numbers:: A001629, A001628, A001872, A001873, A001874, A001875
convolved| , <a NAME="convolution_end">sequences related to (start):</a>
Conway  , <a NAME="Conway">sequences related to (start):</a>
Conway group Con.0: A008924
Conway sequences:: A007012, A004001, A005940, A005941, A003681, A007542, A007471, A003634, A007547, A003635
Conway, sequences made famous by: A004001*, A005150*
Conway-Guy rapidly growing sequence: A046859
Conway-Guy sequence: A005318*, A006755, A005318, A006754, A006756, A006757
Conway| <a NAME="Conway_end">sequences related to (start):</a>
coordination sequences, <a NAME="coordination_sequences">sequences related to (start):</a>
coordination sequences: for A_n root lattices: A005901, A008383, A008385, A008387, A008389, A008391, A008393, A008395, and A035837 through A035876
coordination sequences: for B_n root lattices: A022144 through A022154, A107546 through A107571, and A108000 through A108011
coordination sequences: for C_n root lattices:  A010006, A019560 through A019564, and A035746 through A035787
coordination sequences: for D_n root lattices:  A005901, A007900, A008355, A008357, A008359, A008361, A008376, A008378, and A107506 through A107545
coordination sequences: see also <a href="Sindx_Cor.html#crystal_ball">crystal ball sequences</a>
coordination sequences: see also under names of individual lattices
coordination sequences| <a NAME="coordination_sequences_end">sequences related to (start):</a>
Coprime sequences:: A003139, A003140, A002716, A002715
Cor DIVIDER
core sequences <a NAME="core">(start):</a>
core sequences, (01): A000001 (groups), A000002 (Kolakoski), A000004 (0's), A000005 (divisors), A000007 (0^n), A000009 (distinct partitions), A000010 (totient), A000012 (1's), A000014 (series-reduced trees), A000019 (prim. perm. groups), A000027 (natural numbers), A000029 (necklaces), A000031 (necklaces), A000032 (Lucas), A000035 (0101...)
core sequences, (02): A000040 (primes),  A000041 (partitions), A000043 (Mersenne), A000045 (Fibonacci), A001519 and A001906 (Fibonacci bisections), A000048 (necklaces), A000055 (trees), A000058 (Sylvester), A000069 (odious), A000079 (2^n), A000081 (rooted trees), A000085 (self-inverse perms.), A000088 (graphs), A000105 (polyominoes), A000108 (Catalan), A000109 (polyhedra)
core sequences, (03): A000110 (Bell), A000111 (Euler), A000112 (posets), A000120 (1's in n), A000123 (binary partitions), A000124 (Lazy Caterer), A000129 (Pell), A000140 (Kendall-Mann), A000142 (n!), A000161 (partitions into 2 squares), A000166 (derangements), A000169 (labeled rooted trees)
core sequences, (04): A000182 (tangent), A000203 (sigma), A000204 (Lucas), A000217 (triangular), A000219 (planar partitions), A000225 (2^n-1), A000244 (3^n), A000262 (sets of lists), A000272 (n^(n-2)), A000273 (directed graphs), A000290 (n^2), A000292 (tetrahedral)
core sequences, (05): A000302 (4^n), A000311 (Schroeder's fourth), A000312 (mappings), A000326 (pentagonal), A000330 (square pyramidal), A000364 (Euler or secant), A000521 (j), A000578 (n^3), A000583 (n^4), A000593 (sum odd divisors), A000594 (Ramanujan tau), A000602 (hydrocarbons), A000609 (threshold functions), A000670 (preferential arrangements)
core sequences, (06): A000688 (abelian groups), A000720 (pi(n)), A000793 (Landau), A000796 (Pi), A000798 (quasi-orders or topologies), A000961 (prime powers), A000984 (C(2n,n)), A001003 (Schroeder's second problem), A001006 (Motzkin), A001037 (irreducible polynomials), A001045 (Jacobsthal), A001065 (sum of divisors), A001113 (e), A001147 (double factorials), A001157 (sum of squares of divisors), A001190 (Wedderburn-Etherington), A001221 (omega), A001222 (Omega), A001227 (odd divisors), A001285 (Thue-Morse), A001333 (sqrt(2))
core sequences, (07): A001349 (connected graphs), A001358 (semiprimes), A001405 (C(n,n/2)), A001462 (Golomb), A001477 (integers), A001478 (negatives), A001481 (sums of 2 squares), A001489 (negatives), A001511 (ruler function), A001615 (sublattices), A001699 (binary trees), A001700 (C(2n+1, n+1)), A001764 (C3n,n)/(2n+1)), A001969 (evil), A002033 (perfect partitions), A002083 (Narayana-Zidek-Capell), A002106 (transitive perm. groups), A002110 (primorials), A002113 (palindromes), A002275 (repunits)
core sequences, (08): A002322 (psi), A002378 (pronic), A002426 (central trinomial coefficients), A002487 (Stern), A002530 (sqrt(3)), A002531 (sqrt(3)), A002572 (binary rooted trees), A002620 (quarter-squares), A002654 (re: sums of squares), A002658 (3-trees), A002808 (composites), A003136 (Loeschian), A003418 (LCM), A003484 (Hurwitz-Radon), A004011 (D_4), A004018 (square lattice)
core sequences, (09): A004526 (ints repeated), A005036 (dissections), A005100 (deficient), A005101 (abundant), A005117 (squarefree), A005130 (Robbins), A005230 (Stern), A005408 (odd), A005470 (planar graphs), A005588 (binary rooted trees), A005811 (runs in n), A005843 (even), A006318 (royal paths or Schroeder numbers), A006530 (largest prime factor)
core sequences, (10): A006882 (n!!), A006894 (3-trees), A006966 (lattices), A007318 (Pascal's triangle), A008275 (Stirling 1), A008277 (Stirling 2), A008279 (permutations k at a time), A008292 (Eulerian),  A008683 (Moebius), A010060 (Thue-Morse), A018252 (nonprimes), A020639 (smallest prime factor), A020652 (fractal), A020653 (fractal), A027641 (Bernoulli), A027642 (Bernoulli), A035099 (j_2), A038566 (fractal), A038567 (fractal), A038568 (fractal), A038569 (fractal), A049310 (Chebyshev)
core sequences, (11): A070939 (binary length), A074206 (ordered factorizations), A104725 (complementing systems)
core sequences| <a NAME="core_end">(start):</a>
corners: A006330, A006332, A006333, A006334
correlations, <a NAME="correlations">sequences related to (start):</a>
correlations: A005434
correlations: see also (1) A006606 A010559 A010560 A010561 A010562 A010563 A010564 A010565 A045690 A045691 A045692 A045693
correlations: see also (2) A045694 A045695 A045696 A045697 A053043
correlations| <a NAME="correlations_end">sequences related to (start):</a>
cos(nx), <a NAME="COSNX">sequences related to cos(x) etc. (start):</a>
cos(nx): A028297 (table)
cos(x):: A001250, A003701, A000795, A005766, A003703, A005647, A005046, A002084, A003709, A003728, A003710, A002085, A003711
cosec(x), Taylor series for: A036280*/A036281*, A001896*/A001897*
cosecant numbers: see cosec(x)
cosh x / cos x, Taylor series for: A000795*, A005647
cosh(x):: A002459, A003727, A003719, A003700, A003702
cosh(x)| <a NAME="COSNX_end">sequences related to cos(x) etc. (start):</a>
Costas arrays: A008404*, A001440*, A001441*, A001442, A008403
cot(x), Taylor series for: A002431*/A036278*
cotangent numbers: A002431*/A036278*
Cotes numbers: are called Cotesian numbers in OEIS
Cotesian numbers, <a NAME="Cotesian">sequences related to (start):</a>
Cotesian numbers: A100640/A100641, A100640/A100641, A100643/A100644, A100645/A100646, A100647/A100648, A002176, A002177, A002178, A002179
Cotesian numbers| <a NAME="Cotesian_end">sequences related to (start):</a>
cototient(n): A051953
counter moving puzzle: A004138
counting numbers: A000027*
covering codes: see <a href="Sindx_Coa.html#covcod">codes, covering</a>
covering designs: see <a href="Sindx_Cor.html#covnum">covering numbers</a>
covering numbers , <a NAME="covnum">sequences related to (start):</a>
covering numbers, C(v,k,t) is the smallest number of k-subsets of an n-set such that every t-subset is contained in at least one of the k-subsets.
covering numbers: (1) A011975 A011976 A011977 A011978 A011979 A011980 A011981 A011982 A011983 A011984 A011985 A011986
covering numbers: (2) A011987 A011988 A011989 A011990 A066009 A066010 A066011 A066019 A066040 A066041 A066137 A066140
covering numbers: (3) A066225 A066701
covering numbers: on-line tables of: <a href="http://www.ccrwest.org/cover.html">La Jolla Repository of Coverings</a>
covering numbers|, <a NAME="covnum_end">sequences related to (start):</a>
covering radius of codes: see <a href="Sindx_Coa.html#covcod">codes, covering</a>
covers of an n-set  , <a NAME="COVERS">sequences related to (start):</a>
covers of an n-set (1): A003465*, A007537*, A035348*, A046165*, A049055*, A049056*, A055080*
covers of an n-set (2): A005771, A005744, A005745, A005746, A005747, A005748, A005783, A005784, A005785, A005786, A055066, A003465
covers of an n-set (3): A003467, A003468, A003469, A003486
covers of an n-set|, <a NAME="COVERS_end">sequences related to (start):</a>
Coxeter-Todd 12-dimensional lattice: see <a href="Sindx_K.html#K12">K12 lattice</a>
Critical exponents:: A007181, A007180
Croatian: A056597
Croatian: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
crossing , <a NAME="crossing">sequences related to (start):</a>
crossing a road: A005315*
crossing a road: see also <a href="Sindx_Me.html#meander">meanders</a>
crossing number, rectlinear: A014540
crossing numbers of graphs: A000241*, A007333, A014540, A030179
crossing|, <a NAME="crossing_end">sequences related to (start):</a>
crystal ball sequences , <a NAME="crystal_ball">sequences related to (start):</a>
crystal ball sequences: (1) A001360 A001361 A001845 A001846 A001847 A001848 A001849 A003215 A005891 A005902 A007202 A007204
crystal ball sequences: (2) A007904 A008349 A008356 A008358 A008360 A008362 A008377 A008379 A008384 A008386 A008388 A008390
crystal ball sequences: (3) A008392 A008394 A008396 A008398 A008400 A008402 A008417 A008419 A008421 A008577 A008580 A008922
crystal ball sequences: (4) A010025
crystal ball sequences|, <a NAME="crystal_ball_end">sequences related to (start):</a>
Crystal classes:: A004028, A004027, A004032, A004031
crystallographic groups: see <a href="Sindx_Gre.html#groups">groups, crystallographic</a>
crystobalite lattice: A005392
Cu DIVIDER
cube , <a NAME="CUBE">sequences related to "cube" (start):</a>
cube numbers, centered: A005898*
Cube roots:: A002580, A002581, A005480, A005481, A005486, A005482
Cube with no 3 points collinear:: A003142
cube, coloring a: see <a href="Sindx_Coi.html#coloring">coloring a cube</a>
cube, triangulations of: A019502, A019503, A019504, A166932
cube, truncated: see <a href="Sindx_Tri.html#TRUNC">truncated cube</a>
cube,| <a NAME="CUBE_end">sequences related to "cube" (start):</a>
cube-free , <a NAME="cube_free">sequences related to (start):</a>
cube-free divisors: A073184
cube-free numbers: A004709*, complement is A046099
cube-free word: A010060*
cube-free words: A028445*, A051042, A051043. See also A135491, A170977.
cube-free|, <a NAME="cube_free_end">sequences related to (start):</a>
cubes, Latin, see <a href="Sindx_La.html#Latin">Latin squares</a>
cubes, not the sum of: A001476, A022555, A022561, A022566, A057903, A057904, A057905, A057906, A057907
cubes, not the sum of: see also A031980, A031981, A022550, A014156, A022557, A022552, A014158
cubes, see also: <a href="Sindx_Di.html#do2c">difference of two cubes</a>
cubes, sums of, see also under <a href="Sindx_Su.html#ssq">sums of cubes</a>
cubes: A000578*
Cubes:: A002376, A005897, A006529
Cubic curves:: A005782
Cubic fields:: A005472, A006832
cubic graphs, see <a href="Sindx_Gra.html#graphs">graphs, trivalent</a>
cubic lattice , <a NAME="cubic_lattice">sequences related to (start):</a>
cubic lattice, (1):: A003196, A003193, A002929, A005876, A003301, A007217, A003283, A003490, A006837, A006804, A002891, A006810, A002902, A001393
cubic lattice, (2):: A006783, A001409, A002916, A002915, A005877, A000759, A005572, A002917, A007287, A005573, A005875, A006779, A003496, A006780
cubic lattice, (3):: A003211, A002934, A003279, A002913, A001412, A006819, A007193, A007194, A002918, A002170, A002896, A003299, A003282, A000605
cubic lattice, (4):: A006193, A004013, A005878, A000760, A002169, A003302, A003280, A003303, A003207, A003284, A001408, A004015, A002926, A000761
cubic lattice, (5):: A000762, A005570, A003300, A002165, A003298, A003281, A001413, A005571
cubic lattice, coordination sequence for: A005899*
cubic lattice, polygons on: A001413*
cubic lattice, theta series of: A005875*
cubic lattice, walks on: A001412*
cubic lattice|, <a NAME="cubic_lattice_end">sequences related to (start):</a>
cuboctahedral numbers: A005901, A005902
Cullen , <a NAME="Cullen">sequences related to (start):</a>
Cullen numbers, n*2^n + 1: A002064*
Cullen primes: see <a href="Sindx_Pri.html#primes">primes, Cullen</a>
Cullen|, <a NAME="Cullen_end">sequences related to (start):</a>
curling number , <a NAME="curling_numbers">sequences related to (start):</a>
curling number conjecture: A094004*, A116909, A161223
curling number transform: A090822, A093914, A093921, A094840, A094916
curling number transform: see also <a href="Sindx_Ge.html#Gijswijt">Gijswijt's sequence</a>
curling number|, <a NAME="curling_numbers_end">sequences related to (start):</a>
curves, rational plane: A013587
cusp forms, <a NAME="cusp_forms">sequences related to (start):</a>
cusp forms, for full modular group, of weights 12, 16, 18, 20, 22, 26: A000594, A027364, A037944, A037945, A037946, A037947
cusp forms: (1) A002288 A002408 A003784 A003785 A006354 A006571 A007331 A007332 A007653 A013953 A013975
cusp forms: (2) A027859 A035118 A035150 A035190 A037948 A037949 A037950 A054891
cusp forms: (3) A055749 A055978 A056945 A056947
cusp forms| <a NAME="cusp_forms_end">sequences related to (start):</a>
cusps, number of: A000114, A029936
cutting center: A002887
cutting numbers: A002888
Cy DIVIDER
cycle index , <a NAME="cycle_index">sequences related to (start):</a>
cycle index in Maple: see A036658;
cycle index of representations of groups: A000292 (D_6); A002817 (D_8); A006008 (A_4); A000389, A063843 (S_5); A000543, A047780, A060530 (group of cube)
cycle index of symmetric group S_n for n = 1..27 in Maple: see link in A000142;
cycle index|, <a NAME="cycle_index_end">sequences related to (start):</a>
Cycles in x -> x^2 mod n: A023153
cyclic group: see <a href="Sindx_Gre.html#groups">groups, cyclic</a>
cyclic numbers: A003277*, A001914, A001913
Cyclic:: A002885, A007039, A006205, A007040, A006609, A002956, A005666, A006204, A007687, A007688, A005665, A000804, A000805
cyclotomic cosets: A064285, A064286, A064287
cyclotomic fields, <a NAME="CYCLOTOMIC">sequences related to (start):</a>
cyclotomic fields, class numbers of: A000927 (first factor h-), A055513 (class number h), A061653, A035115
cyclotomic fields, with class number 1: A005848
cyclotomic fields| <a NAME="CYCLOTOMIC_end">sequences related to (start):</a>
cyclotomic polynomials, <a NAME="CYCLOTOMICPOLYNOMIALS">sequences related to (start):</a>
cyclotomic polynomials, largest coefficient of: A013594*, A046887
cyclotomic polynomials, positions of coefficients, <a NAME="CyclotomicPolynomialsCoefficients">sequences related to (start):</a>
cyclotomic polynomials, positions of coefficients: A063696, A063697, A063698, A063699, A063670, A063671
cyclotomic polynomials, positions of coefficients| <a NAME="CyclotomicPolynomialsCoefficients_end">sequences related to (start):</a>
cyclotomic polynomials, triangle of coefficients of: A013595*, A013596*
cyclotomic polynomials, values at phi  , <a NAME="CyclotomicPolynomialsValuesAtPhi">sequences related to (start):</a>
cyclotomic polynomials, values at phi = (sqrt(5)+1)/2: A063703, A063705, A063707
cyclotomic polynomials, values at phi| , <a NAME="CyclotomicPolynomialsValuesAtPhi_end">sequences related to (start):</a>
cyclotomic polynomials, values at x =  integers, <a NAME="CyclotomicPolynomialsValuesAtX">sequences related to (start):</a>
cyclotomic polynomials, values at x = -1 to -13: A020513, A020501, A020502, A020503, A020504, A020505, A020506, A020507, A020508, A020509, A020510, A020511, A020512
cyclotomic polynomials, values at x = 1 to 13: A020500, A019320, A019321, A019322, A019323, A019324, A019325, A019326, A019327, A019328, A019329, A019330, A019331
cyclotomic polynomials, values at x = 2^n: A070526, A070527
cyclotomic polynomials, values at x = EulerPhi(n): A070524, A070525
cyclotomic polynomials, values at x = n: A070518, A070519, A070520, A070521
cyclotomic polynomials, values at x = prime(n): A070522, A070523
cyclotomic polynomials, values at x =|  integers, <a NAME="CyclotomicPolynomialsValuesAtX_end">sequences related to (start):</a>
cyclotomic polynomials, values of (1): A000027 A002061 A002522 A053699 A053716 A002523 A060883 A060884 A060885 A060886 A060887
cyclotomic polynomials, values of (2): A060888 A060889 A060890 A060891 A060892 A060893 A060894 A060895 A060896
cyclotomic polynomials: see also <a href="Sindx_Pol.html#polynomials">polynomials, cyclotomic</a>
cyclotomic polynomials| <a NAME="CYCLOTOMICPOLYNOMIALS_end">sequences related to (start):</a>
cylinder, kings on a: A002493
Czech: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
C[n,k]: binomial coefficient n-choose-k (see A007318)
C_n lattice: coordination sequence for: see A010006.
Da DIVIDER
d(n), number of divisors: A000005*
d(n), number of divisors: records: A002183, A002182
d(n), see also <a href="Sindx_Di.html#divisors">divisors</a>
D3 lattice: see <a href="Sindx_Fa.html#fcc">f.c.c. lattice</a>
D3* lattice: see <a href="Sindx_Ba.html#bcc">b.c.c. lattice</a>
D4 lattice,  <a NAME="D4">sequences related to (start):</a>
D4 lattice, <a href="http://www.research.att.com/~njas/lattices/D4.html">home page for</a>
D4 lattice, coordination sequence for: A007900*, A010079
D4 lattice, crystal ball sequence for: A007204*
D4 lattice, theta series of: A004011*, A005879, A005880, A046949, A108092 (fourth root)
D4 lattice: see also A008369 A008658 A008659 A008660 A008661 A008662 A010367 A010561 A010562 A010565 A028977 A031360 A033692 A033696 A045771 A117216
D4 lattice|  <a NAME="D4_end">sequences related to (start):</a>
D5 lattice, theta series of: A005930*
DAGs: A003087* (labeled), A003024 (labeled)
Danish: A003078
Danish: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
dartboard: see darts board
darts board: A003833, A008575, A104158, A104159
dates: see <a href="Sindx_Ca.html#calendar">calendar</a>
Davenport-Schinzel numbers:: A005004, A005005, A002004, A005006, A005280, A005281
David, J.-P., A118131
Dawson's chess: A002187*
days: see <a href="Sindx_Ca.html#calendar">calendar</a>
de Bruijn sequences: A080679, A058342, A083570, A135472, A144569, A166315, A166316.
De DIVIDER
decagon is spelled 10-gon in the OEIS
deceptive plots, <a NAME="deceptive">sequences related to (start):</a>
deceptive plots: A014612, A034598, A034415, A001358 (semiprimes)
deceptive plots| <a NAME="deceptive_end">sequences related to (start):</a>
Decimal equivalent:: A003100, A003188
decimal expansion  , <a NAME="decimal_expansion">sequences related to (start):</a>
decimal expansion contains no 0's: A007377, A007496
decimal expansion of square roots: see under: square root(s)
decimal expansions (1):: A002117, A007493, A002163, A002392, A007377, A007496, A005532, A006891, A002580, A007507, A002210, A001113, A003678, A000796
decimal expansions (2):: A005533, A005600, A005596, A006834, A005534, A002193, A002285, A002581, A007525, A006890, A005531, A003671, A003672, A002389
decimal expansions (3):: A001620, A005480, A007450, A001622, A005597, A003676, A002162, A005481, A003677, A003673, A002194, A002161, A005486, A005601
decimal expansions (4):: A006833, A003675, A005482, A006752, A002391, A002388
decimal expansions - see also under individual constants (e, A001113; Pi, A000796; etc.)
decimal expansion|, <a NAME="decimal_expansion_end">sequences related to (start):</a>
Decompositions:: A002850, A002126, A001031, A002372
Dedekind , <a NAME="Dedekind">sequences related to (start):</a>
Dedekind psi function: A001615
Dedekind's function eta(x): A010815*, A007706*
Dedekind's function eta(x): see also under <a href="Sindx_El.html#ETAX">eta(x)</a>
Dedekind's problem (or numbers): A000372*, A003182*, A007153*
Dedekind's problem: see also <a href="Sindx_Bo.html#Boolean">Boolean functions, monotone</a>
Dedekind|, <a NAME="Dedekind_end">sequences related to (start):</a>
deficiency , <a NAME="deficiency">sequences related to (start):</a>
deficiency: A033879*, A033880, A033883
deficiency: see also <a href="Sindx_Ab.html#abundancy">abundancy</a>
deficient numbers: A005100*, A006039
deficient| , <a NAME="deficiency_end">sequences related to (start):</a>
Deficit:: A005675
Definite integrals:: A002571, A002570
Degree sequences:: A007020, A005155
degrees of irreducible representations, <a NAME="DEGIRREP">sequences related to (start):</a>
degrees of irreducible representations: (1) A003875*, A003869, A003870, A003871, A003872, A003873, A003874, A003876, A003877, A059796
degrees of irreducible representations: (2) A079685, A108942, A003880, A152465, A152481, A003884, A152486, A003856, ...
degrees of irreducible representations: see also <a href="Sindx_Al.html#ALTERNATINGGROUP">alternating group</a>
degrees of irreducible representations: see also <a href="Sindx_Sw.html#SYMMETRICGROUP">symmetric group</a>
degrees of irreducible representations| <a NAME="DEGIRREP_end">sequences related to (start):</a>
Delannoy numbers, <a NAME="Delannoy">sequences related to (start):</a>
Delannoy numbers, central: A001850*
Delannoy numbers, table of: A008288*
Delannoy numbers| <a NAME="Delannoy_end">sequences related to (start):</a>
Delaunay (or Delone) decompositions: A070881, A070882
Deleham's operator DELTA: A084938
DELTA operator: A084938
Demlo numbers, <a NAME="Demlo">sequences related to (start):</a>
Demlo numbers: A002477*
Demlo numbers: see also (1) A002275 A063750 A075411 A075412 A075413 A075414 A075415 A075416 A075417 A080150 A080151 A080160
Demlo numbers: see also (2) A080161 A080162
Demlo numbers| <a NAME="Demlo_end">sequences related to (start):</a>
denumerants: A000115*
derangements: A000166*
derivative of n: A038554*, A003415*
Derivatives:: A005168, A005727, A003262
descending dungeons: see <a href="Sindx_Do.html#dung">dungeons</a>
describe n: see <a href="Sindx_Sa.html#swys">"say what you see"</a>
describe previous term!: A005150*
describe previous term: see <a href="Sindx_Sa.html#swys">"say what you see"</a>
Describe previous term:: A005341, A006751, A006715, A006919, A007651, A006711
designs, covering: see <a href="Sindx_Cor.html#covnum">covering numbers</a>
designs, spherical: see <a href="Sindx_Sp.html#spherical_designs">spherical designs</a>
destinies: see destiny
destiny: if a map f is applied repeatedly to n, the destiny of n is the smallest number in the resulting trajectory
destiny: see AA161590, A161592, A161593
determinants, <a NAME="determinants">sequences related to (start):</a>
determinants:: A003116, A002771, A002772, A001332, A002776, A002204, A006377, A005249
determinants| <a NAME="determinants_end">sequences related to (start):</a>
Di DIVIDER
Diagonal length function:: A006264
diagonal sequences, <a NAME="diagonal_sequences">sequences related to (start):</a>
diagonal sequences: A051070 = A_n(n) respecting the offset, A091967 = A_n(n) ignoring offset, A107357 = 1 + A_n(n) respecting offset, A102288 = 1 + A_n(n) ignoring offset
diagonal sequences: incorrect versions: A031135, A037181
diagonal sequences: see also <a href="Sindx_Par.html#paradox">paradoxical sequences</a>
diagonal sequences: see also A102288, A100543, A039928
diagonal sequences| <a NAME="diagonal_sequences_end">sequences related to (start):</a>
diagrams, circular: A007474
Diagrams:: A004300, A000699
Diameters:: A007285
diamond lattice, <a NAME="diamond lattice">sequences related to (start):</a>
diamond lattice, theta series of: A005925*
diamond lattice:: A005926, A002930, A001395, A005925, A003195, A007216, A005927, A003212, A003119, A001394, A002923, A001397, A001396, A002895, A002922, A003208, A003220, A001398
diamond lattice| <a NAME="diamond lattice_end">sequences related to (start):</a>
difference between next prime and previous prime for terms of various sequences: see under <a href="Sindx_Pra.html#previous_prime">previous prime</a>
Difference equations:: A005921, A005923, A005922, A005924
difference of two cubes  , <a NAME="do2c">sequences related to (start):</a>
difference of two cubes (01): A014439 A014440 A014441 A034179 A038593 A038594 A038595 A038596 A038597 A038598 A038632 A038673
difference of two cubes (02): A038808 A038847 A038848 A038849 A038850 A038851 A038852 A038853 A038854 A038855 A038856 A038857
difference of two cubes (03): A038858 A038859 A038860 A038861 A038862 A038863 A038864 A051393 A085367 A085377 A086121 A098110
difference of two cubes (04): A125063 A129965 A087786 A045980 A085479 A152043
difference of two cubes| , <a NAME="do2c_end">sequences related to (start):</a>
differences = complement: A005228*, A030124
differences of 0, <a NAME="differences_of_0">sequences related to (start):</a>
differences of 0: A000919 A000920 A001117 A001118 A002051 A002456 A019538
differences of 0| <a NAME="differences_of_0_end">sequences related to (start):</a>
Differences of reciprocals of unity:: A000424, A001240, A001236, A001237, A001241, A001238, A001242
differences of two cubes, see <a href="Sindx_Di.html#do2c">difference of two cubes</a>
differences of zero, see differences of 0
Differences periodic:: A002081
differential equations, <a NAME="differential_equations">sequences related to (start):</a>
differential equations:: A000997, A000995, A000994, A000996, A005443, A000998, A005444, A005442, A005445
differential equations| <a NAME="differential_equations_end">sequences related to (start):</a>
differential structures: A001676*
digital , <a NAME="digital">sequences related to digital root, sum, etc. (start):</a>
digital root: A010888*
digital root: number of n-digit numbers with nonzero multiplicative digital root A051812, A051813, A051814, A051815, A051816, A051817, A051818, A051819, A051820.
digital root: number of n-digit numbers with zero multiplicative digital root A051821, A051822, A051823, A051824, A051825, A051826, A051827, A051828, A051829
digital root: numbers with multiplicative digital root A034048, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056
digital root: numbers with nonzero multiplicative digital root A051803, A051804, A051805, A051806, A051807, A051808, A051809, A051810, A051811
digital root: see also A007612
digital sum: A007953*
digital sum: see also <a href="Sindx_Su.html#sum_of_digits">sum of digits</a> (main entry)
digital|, <a NAME="digital_end">sequences related to digital root, sum, etc. (start):</a>
digits, final: see <a href="Sindx_Fi.html#final">final digits</a>
digits, last: see <a href="Sindx_Fi.html#final">final digits</a>
digits, sums of squares of: A003132
digraphs  (or directed graphs), <a NAME="digraphs">sequences related to (start):</a>
digraphs : A000273* (unlabeled), A053763* (labeled)
digraphs, 2-regular, A007107, A007108
digraphs, acyclic: A003087 (unlabeled), A003024 (labeled), A082402 (connected labeled)
digraphs, acyclic: by number of out-points: A003025, A003026
digraphs, connected: A003085*
digraphs, Eulerian, A007080, A007105
digraphs, mating, A006023, A006025
digraphs, regular, A005641, A005642
digraphs, see also A003028, A003084
digraphs, self-complementary, A003086
digraphs, self-converse, A002499
digraphs, semi-regular, A003286, A005535
digraphs, strongly connected, A003030 (labeled), A035512 (unlabeled); see also A054946 (tournaments)
digraphs, subgraphs of, A005014, A005016, A005327, A005328, A005329, A005330, A005331, A005332
digraphs, switching classes of: A006536*
digraphs, transitive: A000798* (labeled), A001930* (unlabeled)
digraphs, triangle of numbers of: (1) A052296 A054733 A057270 A057271 A057272 A057273 A057274 A057275 A057276 A057277 A057278 A057279
digraphs, triangle of numbers of: (2) A058876
digraphs, unilateral, A003029, A003088
digraphs, weakly connected, A003027
digraphs, weakly distance-regular: A057560
digraphs, with same converse as complement, A003069
digraphs| (or directed graphs), <a NAME="digraphs_end">sequences related to (start):</a>
Dimensions:: A007478, A007473, A007182, A006973, A007293, A003038, A001776
Diophantine equations: see also <a href="Sindx_Pea.html#Pellian">Pellian equation</a>
Diophantine equations:: A006452, A006451, A006454
Dirac delta function: A000007*
directed graphs, see <a href="Sindx_Di.html#digraphs">digraphs</a>
Diregular:: A005642, A005641
Dirichlet divisor problem: A006218
Dirichlet series:  <a NAME="dirich">sequences related to (start):</a>
Dirichlet series: PARI examples: (01) A031358 A145390
Dirichlet series: PARI examples: (02) A000005 A000082 A000086 A000203 A000377 A001157 A001227 A001615 A002131 A002654 A003958 A003959
Dirichlet series: PARI examples: (03) A007425 A007427 A007429 A007430 A007431 A008683 A003421 A003420 A003419 A002558 A003521
Dirichlet series|  <a NAME="dirich_end">sequences related to (start):</a>
discordant, <a NAME="discordant">sequences related to (start):</a>
discordant:: A002634, A000183, A002633, A000270, A000380, A000388, A000561, A000440, A000562, A000470, A000563, A000476, A000492, A000564, A000500, A000565
discordant| <a NAME="discordant_end">sequences related to (start):</a>
discriminants  , <a NAME="discriminants">sequences related to (start):</a>
discriminants of imaginary quadratic fields with class number (negated): (1) 1: A014602, 2: A014603, 3: A006203, 4: A013658, 5: A046002, 6: A046003, 7: A046004, 8: A046005, 9: A046006, 10: A046007, 11: A046008, 12: A046009, 13: A046010,
discriminants of imaginary quadratic fields with class number (negated): (2) 14: A046011, 15: A046012, 16: A046013, 17: A046014, 18: A046015, 19: A046016, 21: A046018, 23: A046020, 24: A048925, 25: A056987,
discriminants of imaginary quadratic fields, see also <a href="Sindx_Qua.html#quadfield">quadratic fields, imaginary</a>
discriminants of real quadratic fields by class nunber: A050950-A050969, A051962-A051965
discriminants of real quadratic fields, see also <a href="Sindx_Qua.html#quadfield">quadratic fields, real</a>
Discriminants:: A006555, A006554
Discriminants:: of fields, A003171, A003657, A003644, A003658, A003656, A003246, A003653, A006832, A002769
Discriminants:: of polynomials, A004124, A007701, A001782, A006312
Discriminants:: of quadratic forms, A003655
discriminants| , <a NAME="discriminants_end">sequences related to (start):</a>
Disjunctive:: A003039, A005616, A005739
Disk:: A005497, A002710, A002712, A004305, A001683, A002713, A005495, A002711, A002709, A005499, A005498
dismal arithmetic , <a NAME="dismal">sequences related to (start):</a>
dismal arithmetic : A087061 (addition), A087062 (multiplication, Maple code)
dismal arithmetic, base 2: A067398 (squares), A067139 (primes), A048888
dismal arithmetic, in other bases, primes: A067139 A169912 A171000 A130206 A170806 A171017 A171122 A171123 A171124 A171125 A171133 A171143 A171144 A171167 A171168 A171169 A171221 A087097*, A087636, A087638, A084666
dismal arithmetic, in other bases, squares: A067398 A171222 A171234 A171396 A171458 A171460 A171558 A171564 A171578 A171591 A171594 A171596 A171635 A171644 A171679 A171717 A087019
dismal arithmetic, in other bases, triangular numbers: A003817 A171230 A171438 A171446 A171464 A171483 A171572 A171573 A171592 A171593 A171597 A171610 A171649 A171678 A171722 A171723 A087052
dismal arithmetic, perfect numbers: see comment in A087416
dismal arithmetic, primes: A087097*, A087636, A087638, A084666
dismal arithmetic: A087019 (squares), A087052 (triangulars), A087036 (cubes), A087051 (4th powers), A087028 and A087029 (divisors), A087079 (partitions), A087121, A087416, A087082 and A087083 (sum of divisors), A162672 or A171818 ("even" numbers)
dismal arithmetic: see also <a href="Sindx_Ca.html#CARRYLESS">carryless arithmetic</a>
dismal arithmetic: see also A087027 A088923 A088924 A087984 A011539
dismal arithmetic: see also A088469-A088481
dismal arithmetic|, <a NAME="dismal_end">sequences related to (start):</a>
dissections, <a NAME="dissections">sequences related to (start):</a>
dissections, of a polygon (1):: A001004, A003455, A000063, A005036, A003456, A000131, A003450, A003454, A003452, A000150, A005034, A003447, A005040, A003445
dissections, of a polygon (2):: A003442, A005038, A000207, A003453, A003449, A003441, A001002, A003448, A005419, A003443, A003451, A003444, A005035, A002293
dissections, of a polygon (3):: A005039, A005033, A005037, A002295, A002296, A002055, A002056, A007160
dissections, of rectangles: A049021*
dissections, of regular polygons to regular polygons: A110000, A110312, A110316
dissections: A000207*
Dissections:: of a ball, A001763, A001762
Dissections:: of a disk, A001761
dissections| <a NAME="dissections_end">sequences related to (start):</a>
distinct prime factors, <a NAME="distinct_prime_factors">sequences related to (start):</a>
distinct prime factors: at least 1: A000027 2: A024619 3: A000977
distinct prime factors: at most 1: A000961 2: A070915
distinct prime factors: exactly 1: A000961 2: A007774 3: A033992 4: A033993 5: A051270 6: A074969
distinct prime factors: number of A001221
distinct prime factors: see also <a href="Sindx_Pri.html#prime_factors">prime factors</a>
distinct prime factors: table of: A125666
distinct prime factors| <a NAME="distinct_prime_factors_end">sequences related to (start):</a>
Distribution problem:: A002018
divergent series: A002387, A092324, A092267, A092753
divisibility sequences  , <a NAME="divseq">sequences related to (start):</a>
divisibility sequences ( 1): A000522 A001339 A002248 A002452 A003757 A005013 A005120 A005178 A006238 A006720 A006769 A007434
divisibility sequences ( 2): A039834 A051138 A058939 A059928 A060478 A082030 A086892 A087612 A087612 A095000 A095177 A105309
divisibility sequences ( 3): A115000 A116201 A127595 A133394 A138573 A141827 A141828 A143699 A152090 A140824
divisibility sequences, 3rd order: A003690, Number of spanning trees in K_3 X P_n
divisibility sequences, 3rd order: A004146, Alternate Lucas numbers - 2
divisibility sequences, 3rd order: A005386, Area of n-th triple of squares around a triangle
divisibility sequences, 3rd order: A006253, Number of perfect matchings (or domino tilings) in C_4 X P_n
divisibility sequences, 3rd order: A007654, Numbers n such that standard deviation of 1,...,n is an integer
divisibility sequences, 4th order: A001350, Associated Mersenne numbers
divisibility sequences, 4th order: A002248, Number of points on y^2+xyA003773, Number of spanning trees in K_4 X P_n
divisibility sequences, 4th order: A006238, Complexity of (or spanning trees in) a 3 X n grid
divisibility sequences, 6th order: A001351, Associated Mersenne numbers
divisibility sequences, 6th order: A001945, a(n+6) A003755, Number of spanning trees in S_4 X P_n
divisibility sequences, 6th order: A005120, a(n+6) A006235, Complexity of doubled cycle
divisibility sequences, 8th order: A005822, Number of spanning trees in third power of cycle
divisibility sequences, 8th order: A028468, Number of perfect matchings in graph P_{6} X P_{n}
divisibility sequences: A001542 = 2 * (A001109)
divisibility sequences: A003645(n)=2^n*Cat(n+1)=A000079(n)*A000108(n+1)
divisibility sequences: A003690 = 3 * (A004254)^2
divisibility sequences: A003696 = (A001353) * (A161158)
divisibility sequences: A003733 = 5 * (A143699)^2
divisibility sequences: A003739 = 5 * (A001906)^2 * (A161159)
divisibility sequences: A003745 = 3 * 5^2 * (A004254) * (A004187)^3
divisibility sequences: A003751 = 5^3 * (A004187)^4
divisibility sequences: A003753 = 2^2 * (A001109) * (A001353)^2 = 2 * (A001542) * (A001353)^2
divisibility sequences: A003755 = (A001109) * (A001906)^2
divisibility sequences: A003761 = (A001906) * (A004254) * (A001109)
divisibility sequences: A003767 = 2^3 * (A001353) * (A001109)^2
divisibility sequences: A003773 = 2 * (A001542)^3 = 2^4 * (A001109)^3
divisibility sequences: A005159(n)=3^n*Cat(n), that is, A005159=A000244*A000108.
divisibility sequences: A005319 = 4*A001109
divisibility sequences: A092136 = (A004187) * (A001906)^3
divisibility sequences: A106328 = 3*A001109
divisibility sequences: A139400 = (A001906) * (A001353) * (A004254) * (A161498)
divisibility sequences| , <a NAME="divseq_end">sequences related to (start):</a>
divisible by each digit: A002796*, A034838*, A034709
divisible by product of digits: A007602*
divisor chains: A067957*, A093313, A093314, A093315, A094097, A094098, A094099
divisors,  <a NAME="divisors">sequences related to (start):</a>
divisors, anti: A066272
divisors, average of, A003601, A006218
divisors, inverse to d(n), A005179
divisors, isolated: A133779 (triangle), A132881 (number)
divisors, isolated: see also A133950, A134320
divisors, largest prime power: A053585
divisors, largest prime: A006530*
divisors, largest: A032742*
divisors, list of: A027750
divisors, middle: A067742*, A071090
divisors, nontrivial: A070824 (divisors of n in the range 1 < d < n), A137510
divisors, number of (d(n)): A000005*
divisors, number of (d(n)): see also (1): A002324, A002175, A002183, A002131, A005179 (inverse function to d(n)), A002132, A002133, A002134, A003680, A005237, A002130, A002191, A002127, A002128
divisors, number of (d(n)): see also (2): A002129, A002173, A000441, A002961, A000477, A000499
divisors, numbers having 11-20: A030629, A030630, A030631, A030632, A030633, A030634, A030635, A030636, A030637, A030638
divisors, numbers having 2-10: A000040, A001248, A030513, A030514, A030515, A030516, A030626, A030627, A030628
divisors, numbers having 21-30: A137484, A137485, A137486, A137487, A137488, A137489, A137490, A137491, A137492, A137493
divisors, of 10^k-1 or 10^k or 10^k+1: (01) k=2 A018283, k=3 A018766 A018767 A018768, k=4 A027894 A133020, 
divisors, of 10^k-1 or 10^k or 10^k+1: (02) k=5 A027893, k=6 A027892 A159765, k=7 A027891, k=8 A027890, 
divisors, of 10^k-1 or 10^k or 10^k+1: (03) k=9 A027889 A027901, k=10 A027895 A027900, k=11 A027896 A027899, 
divisors, of 10^k-1 or 10^k or 10^k+1: (04) k=12 A027897 A027898, k=13 A109933, k=14 A106305, k=15 A111117, 
divisors, of 10^k-1 or 10^k or 10^k+1: (05) k=16 A111211, k=17 A113116, k=18 A113522 
divisors, of 2^k-1: (01) k=6 A018267, k=8 A018358, k=10 A003523, k=12 A003524, k=14 A003525, k=15 A003526, 
divisors, of 2^k-1: (02) k=16 A003527, k=18 A003528, k=20 A003529, k=21 A003530, k=22 A003531, k=24 A003532, 
divisors, of 2^k-1: (03) k=25 A003533, k=26 A003534, k=27 A003535, k=28 A003536, k=29 A003537, k=30 A003538, 
divisors, of 2^k-1: (04) k=32 A004729, k=33 A003540, k=34 A003541, k=35 A003542, k=36 A003543, k=38 A003544, 
divisors, of 2^k-1: (05) k=39 A003545, k=40 A003546, k=42 A003547, k=43 A003548, k=44 A003549, k=45 A003550, 
divisors, of 2^k-1: (06) k=46 A003551, k=47 A003552, k=48 A003553, k=50 A003554, k=60 A081110, k=1092 A177855 
divisors, of cubes: 6^3 A018338, 10^3 A018767, 36^3 A114334, 100^3 A159765
divisors, of divisors: A141586
divisors, of factorials: 4! A018253, 5! A018293, 6! A018609, 10! A161466, 12! A155182, 24! A174228
divisors, of highly composite numbers: (01) 24 A018253, 36 A018256, 48 A018261, 60 A018266,
divisors, of highly composite numbers: (02) 120 A018293, 180 A018321, 240 A018350, 360 A018412,
divisors, of highly composite numbers: (03) 720 A018609, 840 A018676, 1260 A178877, 1680 A178878,
divisors, of highly composite numbers: (04) 2520 A165412, 5040 A178858, 7560 A178859, 10080 A178860,
divisors, of highly composite numbers: (05) 15120 A178861, 20160 A178862, 25200 A178863, 27720 A178864
divisors, of numbers in range 10..99: (01) A018251, A005018, A018253, A018254, A018255, A018256, A018257, A018258,
divisors, of numbers in range 10..99: (02) A018259, A018260, A018261, A018262, A018263, A018264, A018265, A018266,
divisors, of numbers in range 10..99: (03) A018267, A018268, A018269, A018270, A018271, A018272, A018273, A018274,
divisors, of numbers in range 10..99: (04) A018275, A018276, A018277, A018278, A018279, A018280, A018281 
divisors, of numbers in range 100..199: (01) A018283, A018284, A018285, A018286, A018287, A018288, A018289, A018290,
divisors, of numbers in range 100..199: (02) A018291, A018292, A018293, A018294, A018295, A018296, A018297, A018298,
divisors, of numbers in range 100..199: (03) A018299, A018300, A018301, A018302, A018303, A018304, A018305, A018306,
divisors, of numbers in range 100..199: (04) A018307, A018308, A018309, A018310, A018311, A018312, A018313, A018314,
divisors, of numbers in range 100..199: (05) A018315, A018316, A018317, A018318, A018319, A018320, A018321, A018322,
divisors, of numbers in range 100..199: (06) A018323, A018324, A018325, A018326, A018327, A018328, A018329, A018330, A018331 
divisors, of numbers in range 10^10..10^11-1: A027900, A003541, A003542, A003543, A027896
divisors, of numbers in range 10^11..10^12-1: A027899, A003544, A027902, A003545, A027897
divisors, of numbers in range 10^12..10^13-1: A027898, A003546, A003547, A003548, A109933
divisors, of numbers in range 10^13..10^14-1: A003549, A003550, A003551, A106305 
divisors, of numbers in range 10^14..10^15-1: A003552, A003553, A111117
divisors, of numbers in range 10^15..10^16-1: A003554, A111211 
divisors, of numbers in range 10^3..10^4-1: (01) A018767, A018768, A018769, A018770, A018771, A018772, A018773, A018774,
divisors, of numbers in range 10^3..10^4-1: (02) A018775, A018776, A018777, A018778, A018779, A018780, A003523, A178877,
divisors, of numbers in range 10^3..10^4-1: (03) A178878, A133027, A133029, A133035, A133036, A133040, A133075, A133023,
divisors, of numbers in range 10^3..10^4-1: (04) A087005, A165412, A035303, A138814, A003524, A178858, A133030, A178859,
divisors, of numbers in range 10^3..10^4-1: (05) A177500, A133024, A027894
divisors, of numbers in range 10^4..10^5-1: (01) A133020, A178860, A135553, A163354, A178861, A003525, A178862,
divisors, of numbers in range 10^4..10^5-1: (02) A178863, A178864, A087006, A003526, A114334, A003527, A027893
divisors, of numbers in range 10^5..10^6-1: A109492, A003528, A134950, A087007, A027892
divisors, of numbers in range 10^6..10^7-1: A003529, A003530, A161466, A003531, A087008, A027891 
divisors, of numbers in range 10^7..10^8-1: A138815, A003532, A133025, A003533, A003534, A119988, A027890
divisors, of numbers in range 10^8..10^9-1: A003535, A003536, A132997, A155182, A003537, A027889 
divisors, of numbers in range 10^9..10^10-1: A027901, A003538, A004729, A003540, A027895
divisors, of numbers in range 200..299: (01) A018332, A018333, A018334, A018335, A018336, A018337, A018338, A018339,
divisors, of numbers in range 200..299: (02) A018340, A018341, A018342, A018343, A018344, A018345, A018346, A018347,
divisors, of numbers in range 200..299: (03) A018348, A018349, A018350, A018351, A018352, A018353, A018354, A018355,
divisors, of numbers in range 200..299: (04) A018356, A018357, A018358, A018359, A018360, A018361, A018362, A018363,
divisors, of numbers in range 200..299: (05) A018364, A018365, A018366, A018367, A018368, A018369, A018370, A018371,
divisors, of numbers in range 200..299: (06) A018372, A018373, A018374, A018375, A018376, A018377, A018378, A018379,
divisors, of numbers in range 200..299: (07) A018380, A018381
divisors, of numbers in range 300..399: (01) A018382, A018383, A018384, A018385, A018386, A018387, A018388, A018389,
divisors, of numbers in range 300..399: (02) A018390, A018391, A018392, A018393, A018394, A018395, A018396, A018397,
divisors, of numbers in range 300..399: (03) A018398, A018399, A018400, A018401, A018402, A018403, A018404, A018405,
divisors, of numbers in range 300..399: (04) A018406, A018407, A018408, A018409, A018410, A018411, A018412, A018413,
divisors, of numbers in range 300..399: (05) A018414, A018415, A018416, A018417, A018418, A018419, A018420, A018421,
divisors, of numbers in range 300..399: (06) A018422, A018423, A018424, A018425, A018426, A018427, A018428, A018429,
divisors, of numbers in range 300..399: (07) A018430, A018431, A018432 
divisors, of numbers in range 400..499: (01) A018433, A018434, A018435, A018436, A018437, A018438, A018439, A018440,
divisors, of numbers in range 400..499: (02) A018441, A018442, A018443, A018444, A018445, A018446, A018447, A018448,
divisors, of numbers in range 400..499: (03) A018449, A018450, A018451, A018452, A018453, A018454, A018455, A018456,
divisors, of numbers in range 400..499: (04) A018457, A018458, A018459, A018460, A018461, A018462, A018463, A018464,
divisors, of numbers in range 400..499: (05) A018465, A018466, A018467, A018468, A018469, A018470, A018471, A018472,
divisors, of numbers in range 400..499: (06) A018473, A018474, A018475, A018476, A018477, A018478, A018479, A018480,
divisors, of numbers in range 400..499: (07) A018481, A018482, A018483, A018484, A018485, A018486, A018487, A018488
divisors, of numbers in range 500..599: (01) A018489, A018490, A018491, A018492, A018493, A018494, A018495, A018496,
divisors, of numbers in range 500..599: (02) A018497, A018498, A018499, A018500, A018501, A018502, A018503, A018504,
divisors, of numbers in range 500..599: (03) A018505, A018506, A018507, A018508, A018509, A018510, A018511, A018512,
divisors, of numbers in range 500..599: (04) A018513, A018514, A018515, A018516, A018517, A018518, A018519, A018520,
divisors, of numbers in range 500..599: (05) A018521, A018522, A018523, A018524, A018525, A018526, A018527, A018528,
divisors, of numbers in range 500..599: (06) A018529, A018530, A018531, A018532, A018533, A018534, A018535, A018536,
divisors, of numbers in range 500..599: (07) A018537, A018538, A018539, A018540
divisors, of numbers in range 600..699: (01) A018541, A018542, A018543, A018544, A018545, A018546, A018547, A018548,
divisors, of numbers in range 600..699: (02) A018549, A018550, A018551, A018552, A018553, A018554, A018555, A018556,
divisors, of numbers in range 600..699: (03) A018557, A018558, A018559, A018560, A018561, A018562, A018563, A018564,
divisors, of numbers in range 600..699: (04) A018565, A018566, A018567, A018568, A018569, A018570, A018571, A018572,
divisors, of numbers in range 600..699: (05) A018573, A018574, A018575, A018576, A018577, A018578, A018579, A018580,
divisors, of numbers in range 600..699: (06) A018581, A018582, A018583, A018584, A018585, A018586, A018587, A018588,
divisors, of numbers in range 600..699: (07) A018589, A018590, A018591, A018592, A018593, A018594, A018595, A018596, A018597 
divisors, of numbers in range 700..799: (01) A018598, A018599, A018600, A018601, A018602, A018603, A018604, A018605,
divisors, of numbers in range 700..799: (02) A018606, A018607, A018608, A018609, A018610, A018611, A018612, A018613,
divisors, of numbers in range 700..799: (03) A018614, A018615, A018616, A018617, A018618, A018619, A018620, A018621,
divisors, of numbers in range 700..799: (04) A018622, A018623, A018624, A018625, A018626, A018627, A018628, A018629,
divisors, of numbers in range 700..799: (05) A018630, A018631, A018632, A018633, A018634, A018635, A018636, A018637,
divisors, of numbers in range 700..799: (06) A018638, A018639, A018640, A018641, A018642, A018643, A018644, A018645,
divisors, of numbers in range 700..799: (07) A018646, A018647, A018648, A018649, A018650, A018651, A018652 
divisors, of numbers in range 800..899 (01) A018653, A018654, A018655, A018656, A018657, A018658, A018659, A018660,
divisors, of numbers in range 800..899 (02) A018661, A018662, A018663, A018664, A018665, A018666, A018667, A018668,
divisors, of numbers in range 800..899 (03) A018669, A018670, A018671, A018672, A018673, A018674, A018675, A018676,
divisors, of numbers in range 800..899 (04) A018677, A018678, A018679, A018680, A018681, A018682, A018683, A018684,
divisors, of numbers in range 800..899 (05) A018685, A018686, A018687, A018688, A018689, A018690, A018691, A018692,
divisors, of numbers in range 800..899 (06) A018693, A018694, A018695, A018696, A018697, A018698, A018699, A018700,
divisors, of numbers in range 800..899 (07) A018701, A018702, A018703, A018704, A018705, A018706, A018707, A018708, A018709
divisors, of numbers in range 900..999 (01) A018710, A018711, A018712, A018713, A018714, A018715, A018716, A018717,
divisors, of numbers in range 900..999 (02) A018718, A018719, A018720, A018721, A018722, A018723, A018724, A018725,
divisors, of numbers in range 900..999 (03) A018726, A018727, A018728, A018729, A018730, A018731, A018732, A018733,
divisors, of numbers in range 900..999 (04) A018734, A018735, A018736, A018737, A018738, A018739, A018740, A018741,
divisors, of numbers in range 900..999 (05) A018742, A018743, A018744, A018745, A018746, A018747, A018748, A018749,
divisors, of numbers in range 900..999 (06) A018750, A018751, A018752, A018753, A018754, A018755, A018756, A018757,
divisors, of numbers in range 900..999 (07) A018758, A018759, A018760, A018761, A018762, A018763, A018764, A018765, A018766 
divisors, of numbers not less than 10^16: (01) 10^17-1 A113116, 10^18-1 A113522, 
divisors, of numbers not less than 10^16: (02) 2^60-1 A081110, 
divisors, of numbers not less than 10^16: (03) 24! A174228, 
divisors, of numbers not less than 10^16: (04) order of Monster group A174670, decreasing A174671,
divisors, of numbers not less than 10^16: (05) of 2^1092?1 A177855 
divisors, of perfect numbers (as binary): A135652, [A138823], A135653, [A138824], A135654, [A138825], A135655 
divisors, of perfect numbers: (01) 28 A018254, [496/2 A018355], 496 A018487,
divisors, of perfect numbers: (02) [8128/2 A138814], 8128 A133024, [33550336/2 A138815], 33550336 A133025
divisors, of primorials: 5# A018255, 7# A018336, 11# A087005, 13# A087006, 17# A087007, 19# A087008
divisors, of squares: (01) 6^2 A018256, 10^2 A018283, 12^2 A018302, 14^2 A018330, 15^2 A018342, 18^2 A018393, 
divisors, of squares: (02) 20^2 A018433, 21^2 A018458, 22^2 A018480, 24^2 A018528, 26^2 A018587, 28^2 A018645, 
divisors, of squares: (03) 30^2 A018710, 60^2 A035303, 100^2 A133020, 216^2 A114334, 1000^2 A159765 
divisors, of x^n-1: A107748, A114536, A117215, A117342, A117343
divisors, proper: A032741* (divisors of n which are < n), A001065 (sum of), A027751 (list of)
divisors, proper: see also divisors, nontrivial
divisors, proper: see divisors, proper
divisors, proper: the term is sometimes incorrectly used to refer to divisors of n in the range 1 < d < n (see A070824)
divisors, smallest prime power: A028233, A053597
divisors, smallest: A020639*
divisors, sum of odd: A000593*
divisors, sum of: A000203*, A001065* (proper), A048050* (proper)
divisors, summing over, in Maple: A000031*
divisors|  <a NAME="divisors_end">sequences related to (start):</a>
Do DIVIDER
dodecagonal is spelled 12-gonal in the OEIS
dodecahedral numbers, <a NAME="dodecahedral_numbers">sequences related to (start):</a>
dodecahedral numbers: A006566*, A007589, A005904* (centered)
dodecahedral numbers: see also A005903, A053012, A004068, A005917, A053017, A053018, A053019
dodecahedral numbers| <a NAME="dodecahedral_numbers_end">sequences related to (start):</a>
dodecahedron, <a NAME="dodecahedron">sequences related to (start):</a>
dodecahedron: A000545 A005903 A030135 A030137 A054882 A054883 A063722 A063723 A066402 A066404
dodecahedron| <a NAME="dodecahedron_end">sequences related to (start):</a>
Doehlert-Klee designs: A005765
dominoes, <a NAME="domino">sequences related to (start):</a>
dominoes, game of: A031940, A008967, A045430
dominoes, packing a box with (or tilings): (1) A001224 A004003 A006125 A001835 A002414 A003697 A003729 A003735 A003741 A003747 A003757
dominoes, packing a box with (or tilings): (2) A003763 A003769 A003775 A004253 A005178 A007762 A028420 A038758 A054344
dominoes, see also: A006574, A056785, A056786
dominoes: the five domino sequences: A108376, A108377, A108378, A108379, A108392
dominoes| <a NAME="domino_end">sequences related to (start):</a>
Don's sequence: A007448
dopy numbers: A036554
double factorial numbers n!!: A000165*, A001147* A006882*
double factorial numbers, see <a href="Sindx_Fa.html#factorial">factorial numbers, double, n!!</a>
double-free subsets: A050292
doubling substrings (Max Alekseyev's problem):  <a NAME="repeat">sequences related to (start):</a>
doubling substrings (Max Alekseyev's problem): A135473*, A135017, A135156, A135157
doubling substrings (Max Alekseyev's problem): see also A137739, A137740, A137741, A137742, A137743*, A137744, A137745, A137746, A137747, A137748, A130838
doubling substrings| (Max Alekseyev's problem):  <a NAME="repeat_end">sequences related to (start):</a>
doubly triangular numbers: A002817
Dowling numbers: A003581
dragon-curve sequences: see <a href="Sindx_Fo.html#fold">folding a piece of paper (dragon curves)</a>
draughts: see <a href="Sindx_Ch.html#checkers">checkers</a>
Dress's sequence: A001316*
Duffinian numbers: A003624*
dumbbells: A002940, A002941, A002889, A046741, A055608
dungeons:   <a NAME="dung">sequences related to (start):</a>
dungeons: (01) The four main sequences and their pairwise differences are:
dungeons: (02) alpha=A121263 ------------ beta-alpha=A122734 --------- beta=A121265
dungeons: (03) ....|.......................................................|
dungeons: (04) ....|..............gamma-alpha=A131011......................|
dungeons: (05) delta-alpha=A130287.............delta-beta=A131012....beta-gamma=A127744
dungeons: (06) ....|.......................................................|
dungeons: (07) ....|.......................................................|
dungeons: (08) delta=A121296 ------------ delta-gamma=A128916 ------- gamma=A121295
dungeons: (09) see also A121266, A121264, A121863, A121864, A122618
dungeons|   <a NAME="dung_end">sequences related to (start):</a>
duplicating substrings: see <a href="Sindx_Do.html#repeat">doubling substrings</a>
Dutch: A007485, A090589
Dutch: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Dyck paths, <a NAME="Dyck">sequences related to (start):</a>
Dyck paths:: A005223, A005220, A005221, A005701, A005700, A005222, A006149, A006150, A006151
Dyck paths| <a NAME="Dyck_end">sequences related to (start):</a>
dying rabbits: A000044 A023434 A023435 A023436 A023437 A023438 A023439 A023440 A023441 A023442
Dynamic storage:: A005595, A005594
D_3 lattice: see <a href="Sindx_Fa.html#fcc">f.c.c. lattice</a>
D_3* lattice: see <a href="Sindx_Ba.html#bcc">b.c.c. lattice</a>
D_4 lattice: see <a href="Sindx_Da.html#D4">D4 lattice</a>
D_n lattice: coordination sequence for: see A007900.
Ea DIVIDER
e, <a NAME="EEEE">sequences related to (start):</a>
e, A003417, A006083, A006259, A006258, A007676, A006525, A001113*, A001114, A006085, A002668, A007512, A001355, A006526, A002285, A007525, A001204, A002119, A006084
e, continued cotangent for: A002668*
e, continued fraction for: A003417*
e, convergents to: A007676*/A007677*, A002119*/A001517*, A053556*/A053557*, A097545/A097546
e, decimal expansion of: A001113*
e,| <a NAME="EEEE_end">sequences related to (start):</a>
e-divisors of n: see <a href="Sindx_Eu.html#exponential_divisors">exponential divisors</a>
e-perfect numbers: A054979
E-trees:: A007141, A007142, A007143, A007144
e.g.f. , <a NAME="EGF">sequences related to exponential generating functions (start):</a>
e.g.f. exp[sum_{d|M} (exp(d*x)-1)/d], M=1..15: A000110 A002872 A002874 A141003 A036075 A141004 A036077 A141005 A141006 A141007 A036081 A141008 A141009 A141010 A141011
e.g.f. sum_{d|M} (exp(d*x)-1)/d, M=1..15: A000012 A000051 A034472 A001576 A034474 A034488 A034491 A034496 A034513 A034517 A034524 A034660 A141012 A141013 A141014
e.g.f.|, <a NAME="EGF_end">sequences related to exponential generating functions (start):</a>
E6 lattice,   <a NAME="E6">sequences related to (start):</a>
E6 lattice, theta series of: A004007*, A005129 (dual)
E6 lattice|   <a NAME="E6_end">sequences related to (start):</a>
E7 lattice,   <a NAME="E7">sequences related to (start):</a>
E7 lattice, coordination sequence of: A008397*
E7 lattice, crystal ball sequence of: A008398*
E7 lattice, dual, coordination sequence of: A008921*
E7 lattice, dual, crystal ball sequence of: A008922*
E7 lattice, dual, theta series of: A003781, A030443
E7 lattice, theta series of, see also A004535, A005931, A033699, A037191, A047632
E7 lattice, theta series of: A004008*
E7 lattice: E7 Lie algebra: A005496, A030649, A045515
E7 lattice|   <a NAME="E7_end">sequences related to (start):</a>
E8 lattice,   <a NAME="E8">sequences related to (start):</a>
E8 lattice, crystal ball sequence for: A008349, A001361
E8 lattice, orbits of vectors in: A008350
E8 lattice, sizes of balls in: A046948
E8 lattice, theta series of: A004009*, A004017 (with respect to deep hole), A045819 (with respect to mid-point of edge), A108091 (eighth root)
E8 lattice, theta series of: see also: A001943, A004033
E8 lattice|   <a NAME="E8_end">sequences related to (start):</a>
each term divides next: A002782
Earliest sequences:: A007379, A007303, A007479
Early Bird numbers: A116700
eban numbers: A006933*
eben numbers: see eban numbers: A006933*
economical numbers: A046759*
Ed DIVIDER
Eddington's estimate of protons in universe: A008868*
Egyptian fractions, <a NAME="Egypt">sequences related to (start):</a>
Egyptian fractions: A002966*, A002967*, A006585*, A000058*, A020473*
Egyptian fractions: see also (1) A001466 A006487 A006524 A006525 A006526 A014013 A014015 A028229 A028257 A030541
Egyptian fractions: see also (2) A030542 A030543 A030544 A030545 A030546 A030659 A031285 A036680 A051882 A052428
Egyptian fractions: see also (3) A051907 A051908 A051909 A069139 A069261 A038034 A092666 A092667 A092669 A092670 A092671 A092672
Egyptian fractions: using odd denominators: A130738, A169820, A169821.
Egyptian fractions| <a NAME="Egypt_end">sequences related to (start):</a>
EHS numbers: A064164
Eisenstein integers, norms of: A003136*
Eisenstein series, <a NAME="Eisen">sequences related to (start):</a>
Eisenstein series: A006352 (E_2, or G_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24)
Eisenstein series: see also A004011 A037146 A037147 A037148 A037149 A037150
Eisenstein series| <a NAME="Eisen_end">sequences related to (start):</a>
Eisenstein-Jacobi primes: A055664, A055665, A055666, A055667, A055668
EKG sequence : <a NAME="EKG">sequences related to (start):</a>
EKG sequence : A064413*
EKG sequence, B_p sequences for: A064004, A064007, A064042
EKG sequence, controlling primes: A064740*, A064742
EKG sequence, cycles in: A064669, A064793, A064784, A064665, A064666, A064667, A064668
EKG sequence, fixed points: A064420
EKG sequence, generalizations: A064417, A064418, A064419, A064956, A064958, A064959
EKG sequence, inverse permutation: A064664
EKG sequence, records in: A064424, A074177
EKG sequence, where n (etc) appears: A064664, A064954, A064955, A064421, A064423, A064468
EKG sequence, written in prime base: A064743, A064744, A067742
EKG sequence: see also (1): A064301,  A064426, A065519, A064469, A064470, A064471, A064472, A064473, A064474, A064475, A064654, A064655
EKG sequence: see also (2): A064656, A064425, A064952, A064953, A064954, A064955, A064957, A065057
EKG sequence: similar sequences (1): A109890*, A109735, A111241, A111240, A111242, A111243, A109736, A111238, A111239
EKG sequence: similar sequences (2): A094339, A090252, A110924, A084385, A111244
EKG sequence: similar sequences (3): A111267*, A111084, A111268, A111229, A111270, A111271, A111272
EKG sequence: similar sequences (4): A111273
EKG sequence|: <a NAME="EKG_end">sequences related to (start):</a>
El DIVIDER
electron mass: A003672
elementary sequences, number of: A005268
elevator buttons: A011760*, A052406
elliptic , <a NAME="elliptic">sequences related to "elliptic"(start):</a>
elliptic curves, conductors: A005788
elliptic curves, rank of: A060748*, A060838*, A060950*, A060951*, A060952*, A060953*, A007765, A007766
elliptic curves, see also: A002150-A002159, A002153, A005524, A006962
elliptic function sn: see sn
elliptic functions:: A001936, A002318, A001937, A001934, A001938, A002754, A001939, A001940, A001941, A002753, A006089, A004005
elliptic|, <a NAME="elliptic_end">sequences related to "elliptic"(start):</a>
ELN: see Even Lucky Numbers
embeddings of graphs in plane: see <a href="Sindx_Map.html#MAPS">maps, planar</a>
embeddings of graphs in sphere: see <a href="Sindx_Map.html#MAPS">maps, planar</a>
emirps: A006567*, A046732*
emirps: see also A003684, A048054, A007628, A048895, A048890
Enantiomorphs:: A006227
Endomorphism patterns:: A006961
Energy functions:: A002909, A002908, A007239, A003496, A003497, A003498
Engel expansions , <a NAME="Engel">sequences related to (start):</a>
Engel expansions , definition: A006784*
Engel expansions for: e (A028310), e^(1/2) (A004277), pi (A006784), 1/pi (A014012), sqrt(2) (A028254), sqrt(3) (A028257), sqrt(5) (A059176), sqrt(10) (A059177), the golden ratio, (1+sqrt(5))/2 (A028259)
Engel expansions for: Euler's constant gamma (A053977), 2^(1/3) (A059178), 3^(1/3) (A059179), ln(2) (A059180), ln(3) (A059181), ln(10) (A059182), 1/ln(2) (A059183), 1/ln(10) (A059184), Pi^2 (A059185), Pi^2/6 or zeta(2) (A059186)
Engel expansions for: e^Pi (A059196), Pi^e (A059197), e^gamma (A059199), -ln(ln(2)) (A059200), Catalan's constant G (A054543), Khintchine's constant (A054544),
Engel expansions for: sqrt(Pi) (A059187), zeta(3) (A053980), Gamma(1/3) (A059188), Gamma(2/3) (A059189), gamma^2 (A059190), 1/gamma (A059191), ln(1/gamma) (A059192), 1/e (A059193), 1/e^2 (A059194), ln(Pi) (A059195)
Engel expansions: see also (1) A001601 A002812 A006537 A006538 A006539 A006540 A006693 A006695 A007567 A007568
Engel expansions: see also (2) A007768 A014014
Engel expansions|, <a NAME="Engel_end">sequences related to (start):</a>
English words for the numbers, dependent on: A005589, A002810, A001167
English: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
enneagon is spelled 9-gon in the OEIS
enneagonal is spelled 9-gonal in the OEIS
Entringer , <a NAME="Entringer">sequences related to (start):</a>
Entringer numbers: A008280*, A000111*, A006212, A006213, A006214, A006215, A006216, A006217, A008281, A008282, A008283, A010094
Entringer|, <a NAME="Entringer_end">sequences related to (start):</a>
Epstein's Put or Take a Square game: A005240, A005241
equiangular lines: A002853*
Erastothenes: spelled as Eratosthenes in the datasbase
Eratosthenes: see <a href="Sindx_Si.html#sieve">sieve, Eratosthenes</a>
Erdos-Woods numbers: A059756
erf: see error function
error function: A002067, A007019, A007680
Esperanto: A057853
Esperanto: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
esters: A000632, A005958
eta(x), <a NAME="ETAX">sequences related to (start):</a>
eta(x), Dedekind's function: A010815*, A007706*
eta(x): see also A001482, A001483, A001484, A001485, A001486, A001487, A001488, A001490, A006665
eta(x)| <a NAME="ETAX_end">sequences related to (start):</a>
ethylene derivatives: A000631, A005959
Eu DIVIDER
Euclid , <a NAME="Euclid">sequences related to (start):</a>
Euclid numbers: A006862*, A000058*, A014545
Euclid numbers: see also Euclid's proof, primes from
Euclid's algorithm , <a NAME="EucAlg">sequences related to (start):</a>
Euclid's algorithm: (1) A034883 A049816 A049828 A049834 A049837 A049840 A049843 A049848 A049849 A049850 A051010 A051011
Euclid's algorithm: (2) A051012
Euclid's algorithm|, <a NAME="EucAlg_end">sequences related to (start):</a>
Euclid's proof, primes from: A000945 A000946 A002585 A005265 A005266 A051342
Euclid's proof, see also Euclid numbers
Euclid-Mullin sequence: A000945*, A000946*
Euclidean fields: A003174*, A003246*
Euclid|, <a NAME="Euclid_end">sequences related to (start):</a>
Euler characteristics: A006481, A006482, A007888
Euler graphs: see <a href="Sindx_Gra.html#graphs">graphs, Euler</a>
Euler numbers , <a NAME="Euler">sequences related to (start):</a>
Euler numbers: A000364*, A000111*
Euler numbers: generalized:: A001587, A005799, A000187, A000192, A005800, A001586, A000281, A000436, A000490, A002115
Euler numbers: see also <a href="Sindx_Eu.html#EulerianN">Eulerian numbers</a>
Euler numbers: see also A007316, A002435, A001587, A005799, A000187, A000192, A005800, A002627, A001586, A007313, A000281, A002735, A002436, A002438, A002438, A002437, A000436, A000490, A002115
Euler numbers|, <a NAME="Euler_end">sequences related to (start):</a>
Euler Pentagonal Theorem: A010815
Euler PHI function: A003473, A003474
Euler polynomials , <a NAME="EulerP">sequences related to (start):</a>
Euler polynomials: (1) A004172 A004173 A004174 A004175 A011934 A020523 A020524 A020525 A020526 A020547 A020548 A058940
Euler polynomials: (2) A059341/A059342
Euler polynomials|, <a NAME="EulerP_end">sequences related to (start):</a>
Euler totient function phi(n) (A000010): see <a href="Sindx_To.html#totient">totient function phi(n)</a>
Euler transforms:   <a NAME="EulerT">sequences related to (start):</a>
Euler transforms: ( 1) A000070 A000097 A000098 A000237 A000335 A000391 A000417 A000428 A000608 A000710 A000711 A000712
Euler transforms: ( 2) A000713 A000714 A000715 A000716 A001372 A001373 A001384 A001385 A001970 A003080 A003094 A004101
Euler transforms: ( 3) A004113 A005470 A005750 A007003 A007441 A007562 A007563 A007713 A007714 A007864 A018243 A023871
Euler transforms: ( 4) A024607 A029856 A029857 A029859 A029860 A029861 A029862 A029863 A029864 A029877 A029878 A030009
Euler transforms: ( 5) A030010 A030011 A030012 A030268 A034691 A034823 A034824 A034825 A034826 A034899 A035052 A035082
Euler transforms: ( 6) A035528 A038000 A038055 A038059 A038063 A038064 A038065 A038066 A038071 A038072 A045842 A048808
Euler transforms: ( 7) A048809 A048810 A048811 A048812 A048813 A048814 A048815 A049311 A049312 A050381 A050383 A053483
Euler transforms: ( 8) A054051 A054053 A054742 A054746 A054747 A054749 A054919 A054921 A055277 A055375 A055884 A055885
Euler transforms: ( 9) A055886 A055922 A055923
Euler transforms: see also <a href="transforms.txt">Transforms</a> file
Euler transforms|   <a NAME="EulerT_end">sequences related to (start):</a>
Euler's constant gamma (or Euler-Mascheroni constant): A002852* (continued fraction for), A001620* (decimal expansion of)
Euler's constant gamma: see also A006284, A002389
Euler's idoneal numbers, or numeri idonei (or numerus idoneus):  <a NAME="idoneal">sequences related to (start):</a>
Euler's idoneal numbers, or numeri idonei (or numerus idoneus): A000926*
Euler's idoneal numbers, or numeri idonei (or numerus idoneus): see also A139642, A139827
Euler's idoneal numbers| or numeri idonei (or numerus idoneus):  <a NAME="idoneal_end">sequences related to (start):</a>
Euler's Pentagonal Theorem: A010815
Euler's pentagonal theorem: see <a href="Sindx_Pro.html#1mxtok">expansions of product_{k >= 1} (1-x^k)^m</a>
Euler's product: A002107
Euler-Bernoulli numbers: A008280*, A008281
Euler-Jacobi pseudoprimes: see <a href="Sindx_Ps.html#pseudoprimes">pseudoprimes</a>
Euler-Mascheroni constant: see Euler's constant
Eulerian circuits: A006239, A006240, A007082
Eulerian numbers,   <a NAME="EulerianN">sequences related to (start):</a>
Eulerian numbers, triangle of: A008292*, A008517, A049061
Eulerian numbers, triangle of: see also A008518, A007338, A046802, A046803, A014467, A014468, A014469, A014470, A014472
Eulerian numbers: A008292*
Eulerian numbers: see also (1) A000295 A000460 A000498 A000505 A000514 A000800 A001243 A001244 A004301 A005803 A006260 A006551
Eulerian numbers: see also (2) A007347 A011818 A014449 A014450 A014459 A014461 A014630 A014732 A014733 A014734 A014735 A014748
Eulerian numbers: see also (3) A014749 A014756 A014758 A014759 A014765 A025585 A030196 A038675 A046802 A048516 A049039
Eulerian numbers: see also <a href="Sindx_Eu.html#Euler">Euler numbers</a>
Eulerian numbers|   <a NAME="EulerianN_end">sequences related to (start):</a>
Eulerian polynomials: A008292*
Eulerian polynomials: see <a href="Sindx_Eu.html#EulerP">Euler polynomials</a>
even numbers, fake: A080588
even numbers: A005843*
even numbers: see also A007534
even numbers: see also eban numbers A006933
Even sequences:: A000117, A000116, A000206, A000208
even unimodular lattices, see: <a href="Sindx_La.html#Lattices">lattices, unimodular</a>
evenish numbers (all digits even): A014263
every permutation of digits is prime: A003459*
evil numbers: A001969*
excess of n: A046660*
exclusive OR, see under XOR
exp(1 - e^x): A000587*
exp(Pi*sqrt(163)): A060295, A058292, A019297
exponential divisors, <a NAME="exponential_divisors">sequences related to (start):</a>
exponential divisors: A049419, A051377, A054979, A054980
exponential divisors| <a NAME="exponential_divisors_end">sequences related to (start):</a>
exponential numbers: A000110
Exponentiation:: A007548, A007549
exponents in factorization of n: A124010
Expressions:: A003006, A003007, A003008
Expulsion array:: A007063
extending, sequences that need, see <a href="Sindx_Se.html#extend">sequences that need extending</a>
extremal theta series and weight enumerators, <a NAME="EXTREMAL">sequences related to (start):</a>
extremal theta series: A034597*, A034598, A008408, A004672, A004675
extremal weight enumerators: A034414*, A034415
extremal| theta series and weight enumerators, <a NAME="EXTREMAL_end">sequences related to (start):</a>
EYPHEKA! , <a NAME="EYPHEKA">sequences related to (start):</a>
EYPHEKA! num = DELTA + DELTA + DELTA: A008443, A053604, A063992, A063993
EYPHEKA| , <a NAME="EYPHEKA_end">sequences related to (start):</a>
E_4 and E_6 theorem: A008615
E_4 Eisenstein series: A004009
E_6 Eisenstein series: A013973
E_6 group: A008584
E_6 lattice: see <a href="Sindx_Ea.html#E6">E6 lattice</a>
E_7 lattice: see <a href="Sindx_Ea.html#E7">E7 lattice</a>
E_7 Lie algebra: see <a href="Sindx_Ea.html#E7">E7 Lie algebra</a>
E_8 lattice: see <a href="Sindx_Ea.html#E8">E8 lattice</a>
E_8(3): A002268
Fa DIVIDER
f.c.c. lattice , <a NAME="fcc">sequences related to (start):</a>
f.c.c. lattice, <a href="http://www.research.att.com/~njas/lattices/D3.html">home page for</a>
f.c.c. lattice, animals in: A006194 A007198 A007199 A038172 A038173 A038174 A039742
f.c.c. lattice, coordination sequence for: A005901*, A005902*
f.c.c. lattice, norms: A004014, A110907
f.c.c. lattice, orbits on points: A008368
f.c.c. lattice, polygons on: A001337 A002899 A005398
f.c.c. lattice, series expansions for:  (1) A001407 A002165 A002166 A002892 A002918 A002921 A002924 A003205 A003209 A003491 A003495 A003498
f.c.c. lattice, series expansions for:  (2) A006806 A006812 A047712
f.c.c. lattice, theta series of: A004015* A005884 A005885 A005886 A005887 A008663 A008664
f.c.c. lattice, walks on: (1) A000765 A000766 A000767 A000768 A001336 A003287 A003288 A005543 A005544 A005545 A005546 A005547
f.c.c. lattice, walks on: (2) A005548 A001337
f.c.c. lattice, walks on: see also f.c.c. lattice, animals in
f.c.c. lattice|, <a NAME="fcc_end">sequences related to (start):</a>
fabrics: A005441
face-centered cubic lattice: see <a href="Sindx_Fa.html#fcc">f.c.c. lattice</a>
factorial numbers , <a NAME="factorial">sequences related to (start):</a>
factorial numbers n!: A000142*
factorial numbers, !n: A003422*
factorial numbers, alternating: A005165*
factorial numbers, as a product of smaller factorials: A034878, A075082
factorial numbers, as a sum of two triangular numbers: A180590. A152089, A171099
factorial numbers, differences of: A001564 A001565 A001688 A001689 A023043 A023044 A023045 A023046 A023047 A047920
factorial numbers, divisibility of: A011776, A011777, A011778
factorial numbers, double, n!!: A000165*, A001147*, A006882*
factorial numbers, double, n!!: see also A007919, A007922, A019513, A045766
factorial numbers, last nonzero digit in various bases (3-16): A136690, A136691, A136692, A136693, A136694, A136695, A136696, A008904*, A136697, A136698, A136699, A136700, A136701, A136702.
factorial numbers, left, !n: A003422*
factorial numbers, n-factorials (1): A000407 A005329 A028687 A028688 A028692 A028693 A028694 A034829 A034830 A034831 A034832 A034833 A034834 A034835
factorial numbers, n-factorials (2): A034904 A034908 A034909 A034910 A034911 A034912 A034975 A034976 A034977 A034996 A035012 A035013 A035017 A035018
factorial numbers, n-factorials (3): A035020 A035021 A035022 A035023 A035024 A035097 A035265 A035272 A035273 A035274 A035275 A035276 A035277 A035278
factorial numbers, n-factorials (4): A035279 A035308 A035323 A045754 A045755 A045756 A045757 A049209 A049210 A049211 A049212 A051188 A051189 A051232
factorial numbers, n-factorials (5): A051262
factorial numbers, q-factorials (1): A015001 A015002 A015004 A015005 A015006 A015007 A015008 A015009 A015011 A015013 A015015 A015017
factorial numbers, q-factorials (2): A015018 A015019 A015020 A015022 A015023 A015025 A015026 A015027 A015028
factorial numbers, sequences related to digits of: A006488 A033147 A033180 A035065 A035067 A045520 A045521 A045522 A045523 A045524 A045525 A045526 A045527 A045528
factorial numbers: see also (01): A000966 A001048 A001272 A001710 A001715 A001720 A001725 A001730 A001804 A002301 A002981 A002982
factorial numbers: see also (02): A003135 A004664 A005008 A005095 A005096 A005212 A005359 A006472 A006993 A007339 A007611
factorial numbers: see also (03): A007749 A010790 A010791 A010792 A010793 A010794 A010795 A010796 A010797 A010798 A010799 A010800
factorial numbers: see also (04): A024168 A033187 A033932 A033933 A034860 A034865 A034866 A034878 A036603 A037082 A037083 A038154 A038156
factorial numbers: see also (05): A038157 A038507 A045647 A048742 A049432 A049433 A049614 A033312
factorial numbers: see also (06): A000178, A000197, A007489, A001044, A000596, A002454, A002455, A002453, A000597, A05130, A051188
factorial numbers: see also (07): A002109, A010786, A014144, A055209, A008904, A008905
factorial numbers: see also <a href="Sindx_Ce.html#cfn">central factorial numbers</a>
factorial numbers|, <a NAME="factorial_end">sequences related to (start):</a>
factorials, double, see factorial numbers, double, n!!
factorials, number of trailing zeros: A027868
factorials: see <a href="Sindx_Fa.html#factorial">factorial numbers</a>
factoring , <a NAME="factoring">sequences related to (start):</a>
factoring n, number of ways: A001055*
FactorInteger (Mma): A035306
Factorization (MAGMA): A035306
factorization patterns: A006167, A006168, A006169, A006170, A006171
factorization problems: see <a href="Sindx_Se.html#extend">sequences whose extension requires factoring large numbers</a>
factorizations of important sequences: exponents in factorization of n: A124010, A064547
factorizations of important sequences: n: A027746; Fibonacci(n): A060441; 2^n-1: A001265; 2^n+1: A001269
factorizations, into given number of factors: writing n = x*y (A038548, unordered, A000005, ordered), n = x*y*z (A034836, unordered, A007425, ordered), n = w*x*y*z (A007426, ordered)
factorizations, ordered: A074206*, A002033
factorizations|, <a NAME="factoring_end">sequences related to (start):</a>
falling factorials: A005490, A005492, A005494
fanout-free functions , <a NAME="fanout">sequences related to (start):</a>
fanout-free functions: A005612 A005615 A005617 A005736 A005737 A005738 A005740 A005741 A005742 A005743
fanout-free functions|, <a NAME="fanout_end">sequences related to (start):</a>
Farey series or tree or fractions , <a NAME="Farey">sequences related to (start):</a>
Farey series or tree: A006842*/A006843*, A007305*/A007306*, A049455*/A049456*.
Farey series or tree: see also <a href="Sindx_St.html#Stern">Stern-Brocot tree</a>
Farey series or tree: see also A005728
Farey series or tree| or fractions , <a NAME="Farey_end">sequences related to (start):</a>
fcc lattice: see <a href="Sindx_Fa.html#fcc">f.c.c. lattice</a>
Fe DIVIDER
Feigenbaum constants: A006890*, A006891*
Fermat , <a NAME="Fermat">sequences related to (start):</a>
Fermat coefficients: A000967 A000968 A000969 A000970 A000971 A000972 A000973
Fermat numbers, 2^(2^n) + 1: A000215*, A050922
Fermat numbers: see also A046052
Fermat primes, generalized: see primes, generalized Fermat
Fermat primes: see <a href="Sindx_Pri.html#primes">primes, Fermat</a>
Fermat quotients: A007663*
Fermat remainders: A002323*
Fermat's last theorem: A019590*
Fermat|, <a NAME="Fermat_end">sequences related to (start):</a>
Fermionic string states: A005309, A005310
Feynman diagrams: A005411, A005412, A005413, A005414
Fi DIVIDER
Fibbinary numbers: A003714*
Fibonacci entry points: see under Fibonacci numbers, Fibonacci entry points
Fibonacci expansion: see <a href="Sindx_Z.html#Zeckendorf">Zeckendorf expansion</a>
Fibonacci numbers,  +- k: A000045 A001611 A000071 A157725 A001911 A157726 A006327 A157727 A157728 A157729 A167616
Fibonacci numbers,  <a NAME="Fibonacci">sequences related to (start):</a>
Fibonacci numbers,  A000045*
Fibonacci numbers, bisection of: A001519, A001906
Fibonacci numbers, coded: A005203, A005205
Fibonacci numbers, compositions into: see Fibonacci numbers, number of ways to write n as a sum of
Fibonacci numbers, convolved: A001628 A001629 A001872 A001873 A001874 A001875 A006684 A037027
Fibonacci numbers, ending in n: A000350
Fibonacci numbers, Fibonacci entry points: A001602, A001177
Fibonacci numbers, Fibonacci in digits: A093086
Fibonacci numbers, frequencies: A001178
Fibonacci numbers, generalized, g.f.: (2-rx)/(1-rx-sx^2): (1) A000032 (Lucas), A002203 (Pell-Lucas), A006497, A014448, A014551 (Pell-Jacobsthal), A072265, A075118, A080040, A080042, A085447, A087130, A087131,
Fibonacci numbers, generalized, g.f.: (2-rx)/(1-rx-sx^2): (2) A087404, A087451, A102345
Fibonacci numbers, generalized, g.f.: x/(1-rx-sx^2): (1) A000045 (Fibonacci), A000129 (Pell), A001045 (Jacobsthal), A001076, A002532, A005668, A006130, A006131, A006190, A007482, A015440, A015441,
Fibonacci numbers, generalized, g.f.: x/(1-rx-sx^2): (2) A015442, A015518, A015519, A015521, A015523, A015530, A015531, A015532, A015532, A015535, A015536, A015537,
Fibonacci numbers, generalized, g.f.: x/(1-rx-sx^2): (3) A015540, A015541, A015551, A015555, A015559, A015561, A015562, A015564, A015574, A015575, A015579, A015580,
Fibonacci numbers, generalized, g.f.: x/(1-rx-sx^2): (4) A015581, A030195, A057087, A057088, A080953, A083099, A083858, A085449, A085939, A090017, A106648
Fibonacci numbers, generalized: (1) A001584 A005189 A006207 A006208 A006209 A006210 A006211 A006603 A006604 A015440 A015441 A015442
Fibonacci numbers, generalized: (2) A015443 A015445 A015446 A015447 A015448 A015449 A015453 A015454 A015455 A015456 A015457 A054437
Fibonacci numbers, generalized: (3) A057076
Fibonacci numbers, mod n: A001175
Fibonacci numbers, number of ways to write n as a sum of: A000119, A000121, A013583, A083853, A076739, A080888, A003107, A007000
Fibonacci numbers, occurrence of numbers in:: A001602, A001177
Fibonacci numbers, partitions into: see Fibonacci numbers, number of ways to write n as a sum of
Fibonacci numbers, partitions into:: A003107, A007000
Fibonacci numbers, periods of: A001175
Fibonacci numbers, prime: see <a href="Sindx_Pri.html#primes">primes, Fibonacci numbers</a>
Fibonacci numbers, primes dividing:: A001578, A000057, A001604, A001603
Fibonacci numbers, primitive part of: A061446
Fibonacci numbers, products of:: A003266
Fibonacci numbers, reciprocals of:: A006172, A005522
Fibonacci numbers, signed: A039834
Fibonacci numbers, sums of:: A000119, A000121, A000557, A005968, A005969, A006133, A000556, A006132
Fibonacci numbers, transforms of:: A007440, A007435, A007436, A007552, A007553
Fibonacci numbers, two-dimensional: A006506
Fibonacci numbers: complementary sequence: A001650
Fibonacci numbers: not: A001650
Fibonacci numbers: see also (1): A007492, A003603, A001176, A001611, A003247, A003251, A003258, A002062, A006985, A006449, A001932, A005370, A003233, A005653
Fibonacci numbers: see also (2): A005620, A003254, A005625, A000071, A005207, A005269, A005624, A003256, A007570, A005270, A003257, A005626, A005623, A003255
Fibonacci numbers: see also (3): A005652, A005622, A003252, A003234, A006502, A005189, A001178, A001690, A005621, A003259, A003250, A003147, A003248, A003249
Fibonacci numbers: see also <a href="Sindx_Par.html#para_Fibonacci">para_Fibonacci sequences</a>
Fibonacci numbers|  <a NAME="Fibonacci_end">sequences related to (start):</a>
Fibonacci or circle product: A101330
Fibonacci or circle product: see <a href="Sindx_K.html#Knuth">Knuth's Fibonacci or circle product</a>
Fibonacci primitive root: A003147
Fibonacci representations:: A003247, A003251, A003258, A003233, A003254, A003256, A003257, A003255, A003252, A003234, A003259, A003250, A003248, A003249
Fibonacci search: A006478, A006479
Fibonacci successors: A022342*
Fibonacci word (or binary sequence): A003849*, A005614*, A003842*, A005713, A036299, A076662
Fibonacci-Pascal triangle: A0045995*, A006449
Fibonomial Catalan numbers: A003150*
Fibonomial coefficients (1): A001655 A001656 A001657 A001658 A003267 A003268 A010048* A034801 A034802 A056565 A056566 A056567
Fibonomial coefficients (2): A056568 A056570
Fielder sequences:: A001635, A001636, A001641, A001642, A001643, A001644, A001645, A001648, A001649, A001638, A001639, A001640
fields, cyclotomic: see <a href="Sindx_Cy.html#CYCLOTOMIC">cyclotomic fields</a>
fields, quadratic: see <a href="Sindx_Qua.html#quadfield">quadratic fields</a>
Fifteen Puzzle, <a NAME="Fifteen_Puzzle">sequences related to (start):</a>
Fifteen Puzzle: A087725, A089473, A089484, A090031, A090032, A151943
Fifteen Puzzle| <a NAME="Fifteen_Puzzle_end">sequences related to (start):</a>
Fifth roots:: A005532, A005533, A005534, A003673
Figurate numbers:: A000579, A002417, A002418, A002419
figure 8's: A003304, A003305
filaments: A002013, A002014
final digits , <a NAME="final">sequences related to final digits of numbers (start):</a>
final digits:  of n: A010879*
final digits: (1) A000689 A000855 A000993 A001148 A001218 A001264 A001311 A001903 A002015 A003893 A004071 A007652
final digits: (2) A008904 A008906 A008954 A008959 A008960 A014390 A014391 A014392 A014393 A025016 A028915
final digits: (3) A030984 A030985 A030986 A030987 A030988 A030989 A030990 A030991 A030992 A030993 A030994 A030995
final digits: (4) A045547 A045548 A045549 A045550 A045551 A045552 A045553 A045554 A045555 A045556 A045557 A045558
final digits: (5) A045559 A045560 A045561 A045562 A045563 A045564 A045565 A045566 A045567 A045568 A045569 A045570
final digits: (6) A045574 A046804 A047501 A055992 A056129 A056525 A056849 A058376 A059995 A060073 A060458 A060460
final digits: (7) A060582 A060588 A061448 A061449 A061450 A061590 A061834
final digits: (8) A061835 A061839 A062885 A063272 A063944 A064541 A064733 A064734 A065356
final nonzero digits of factorial numbers in various bases (3-16): A136690, A136691, A136692, A136693, A136694, A136695, A136696, A008904*, A136697, A136698, A136699, A136700, A136701, A136702.
final| digits, <a NAME="final_end">sequences related to final digits of numbers (start):</a>
Fine's sequence: A000957*
fine-structure constant: A003673, A005600
Finite automata:: A007041, A006845, A000282, A006691, A000591, A006689, A006692, A006690
finite difference measurements: A005192
finite sequences with a large number of terms, <a NAME="FINITEBUTLONG">sequences related to (start):</a>
finite sequences with a large number of terms: A038087, A038093, A102850, A117853
finite sequences with a large number of terms| <a NAME="FINITEBUTLONG_end">sequences related to (start):</a>
Finnish: A001050
Finnish: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
first factors: A000927
First kind:: A000914, A000254, A000399, A001303, A000454, A000482, A001233, A000915, A001234
First moment:: A006732, A006740, A006736
First occurrence of:: A001602, A001177
fiveish numbers (all digits 0 or 5): A169964
fixed points of mappings  , <a NAME="FIXEDPOINTS">sequences related to (start):</a>
fixed points of mappings (01): A006996 0 -> {0, 0, 0}, 1 -> {1, 2, 0}, 2 -> {2, 1, 0}
fixed points of mappings (02): A039969 0 -> {0, 0, 0}, 1 -> {1, 2, 0}, 2 -> {2, 1, 0} when 0 -> {0, 0, 0} 1 -> {1, 1, 1}, 2 -> {2, 2, 2}
fixed points of mappings (03): A007949 0 -> {0, 0, 1}, 1 -> {0, 0, 2}, 2 -> {0, 0, 3}, 3 -> {0, 0, 4}, etc., a -> {0, 0, a + 1}
fixed points of mappings (04): A003849 0 -> {0, 1},    1 -> {0}
fixed points of mappings (05): A096268 0 -> {0, 1},    1 -> {0, 0}
fixed points of mappings (06): A000035 0 -> {0, 1},    1 -> {0, 1}
fixed points of mappings (07): A096270 0 -> {0, 1},    1 -> {0, 1, 1}
fixed points of mappings (08): A100260 0 -> {0, 1},    1 -> {0, 2},    2 -> {3, 1},    3 -> {3, 2}
fixed points of mappings (09): A080843 0 -> {0, 1},    1 -> {0, 2},    2 -> {0}
fixed points of mappings (10): A096271 0 -> {0, 1},    1 -> {0, 2},    2 -> {0, 0}
fixed points of mappings (11): A007814 0 -> {0, 1},    1 -> {0, 2},    2 -> {0, 3},    3 -> {0, 4}, etc., a -> {0, a + 1}
fixed points of mappings (12): A101614 0 -> {0, 1},    1 -> {0, 2},    2 -> {1, 0}
fixed points of mappings (13): A101659 0 -> {0, 1},    1 -> {0, 2},    2 -> {1, 1}
fixed points of mappings (14): A101660 0 -> {0, 1},    1 -> {0, 2},    2 -> {1, 2}
fixed points of mappings (15): A101661 0 -> {0, 1},    1 -> {0, 2},    2 -> {2, 0}
fixed points of mappings (16): A101662 0 -> {0, 1},    1 -> {0, 2},    2 -> {2, 1}
fixed points of mappings (17): A101663 0 -> {0, 1},    1 -> {0, 2},    2 -> {2, 2}
fixed points of mappings (18): A010060 0 -> {0, 1},    1 -> {1, 0}
fixed points of mappings (19): A101664 0 -> {0, 1},    1 -> {1, 2},    2 -> {0, 0}
fixed points of mappings (20): A101665 0 -> {0, 1},    1 -> {1, 2},    2 -> {0, 2}
fixed points of mappings (21): A101666 0 -> {0, 1},    1 -> {1, 2},    2 -> {1, 0}
fixed points of mappings (22): A101667 0 -> {0, 1},    1 -> {1, 2},    2 -> {2, 0}
fixed points of mappings (23): A071858 0 -> {0, 1},    1 -> {1, 2},    2 -> {2, 0}
fixed points of mappings (24): A000120 0 -> {0, 1},    1 -> {1, 2},    2 -> {2, 3},    3 -> {3, 4},   etc.
fixed points of mappings (25): A101668 0 -> {0, 1},    1 -> {2, 0},    2 -> {0, 0}
fixed points of mappings (26): A101669 0 -> {0, 1},    1 -> {2, 0},    2 -> {0, 1}
fixed points of mappings (27): A101670 0 -> {0, 1},    1 -> {2, 0},    2 -> {0, 2}
fixed points of mappings (28): A101671 0 -> {0, 1},    1 -> {2, 0},    2 -> {1, 0}
fixed points of mappings (29): A101672 0 -> {0, 1},    1 -> {2, 0},    2 -> {1, 1}
fixed points of mappings (30): A010872 0 -> {0, 1},    1 -> {2, 0},    2 -> {1, 2}
fixed points of mappings (31): A101673 0 -> {0, 1},    1 -> {2, 0},    2 -> {2, 0}
fixed points of mappings (32): A101674 0 -> {0, 1},    1 -> {2, 0},    2 -> {2, 1}
fixed points of mappings (33): A112658 0 -> {0, 1),    1 -> {2, 1},    2 -> {0, 3},    3 -> {2, 3}
fixed points of mappings (34): A080846 0 -> {0, 1, 0}, 1 -> {0, 1, 1}
fixed points of mappings (35): A076826 0 -> {0, 1, 2}, 1 -> {1},       2 -> {2, 1, 0}
fixed points of mappings (36): A053838 0 -> {0, 1, 2}, 1 -> {1, 2, 0}, 2 -> {2, 0, 1}
fixed points of mappings (37): A091297 0 -> {0, 2},    1 -> {0, 2},    2 -> {1, 1}
fixed points of mappings (38): A092606 0 -> {0, 2, 1}, 1 -> {0},       2 -> {0}
fixed points of mappings (39): A000004 0 -> {1},       1 -> {0, 0}
fixed points of mappings (40): A000012 0 -> {1},       1 -> {0, 0}
fixed points of mappings (41): A005614 0 -> {1},       1 -> {1, 0}
fixed points of mappings (42): A080764 0 -> {1},       1 -> {1, 0, 1}}
fixed points of mappings (43): A080764 0 -> {1},       1 -> {1, 1, 0}
fixed points of mappings (44): A029883 0 -> {1, -1},   1 -> {1, 0, -1}, -1 -> {0}
fixed points of mappings (45): A096268 0 -> {1, 0},    1 -> {0, 0}
fixed points of mappings (46): A035263 0 -> {1, 1},    1 -> {1, 0}
fixed points of mappings (47): A092412 0 -> {1, 1},    1 -> {1, 2},    2 -> {1, 3},    3 -> {1, 0}
fixed points of mappings (48): A014578 0 -> {1, 1, 1}, 1 -> {1, 1, 0}
fixed points of mappings (49): A089650 0 -> {1, 1, 1}, 1 -> {1, 2, 0}, 2 -> {1, 0, 2}
fixed points of mappings (50): A089652 0 -> {1, 1, 1, 1}, 1 -> {1, 2, 3, 0}, 2 -> {1, 3, 1, 3}, 3 -> {1, 0, 3, 2}
fixed points of mappings (51): A051064 1 -> {1, 1, 2}, 2 -> {1, 1, 3}, 3 -> {1, 1, 4}, 4 -> {1, 1, 5}, etc.
fixed points of mappings (52): A092400 1 -> {1, 1, 2, 1, 2, 1, 1},     2 -> {1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1}
fixed points of mappings (53): A003842 1 -> {1, 2},    2 -> {1}
fixed points of mappings (54): A056832 1 -> {1, 2},    2 -> {1, 1}
fixed points of mappings (55): A102005 1 -> {1, 2},    2 -> {1, 1, 1}
fixed points of mappings (56): A007001 1 -> {1, 2},    2 -> {1, 2, 3}, 3 -> {1, 2, 3, 4}, etc., a -> {1,..., a+1}
fixed points of mappings (57): A092782 1 -> {1, 2},    2 -> {1, 3},    3 -> {1}
fixed points of mappings (58): A103269 1 -> {1, 2},    2 -> {1, 3},    3 -> {1}
fixed points of mappings (59): A001511 1 -> {1, 2},    2 -> {1, 3},    3 -> {1, 4},    4 -> {1, 5}, etc.
fixed points of mappings (60): A105498 1 -> {1, 2},    2 -> {1, 4},    3 -> {3, 4},    4 -> {3, 4}
fixed points of mappings (61): A001285 1 -> {1, 2},    2 -> {2, 1}
fixed points of mappings (62): A001316 1 -> {1, 2},    2 -> {2, 4},    4 -> {4, 8},    8 -> {8, 16}, etc., a -> {a, 2a}
fixed points of mappings (63): A100619 1 -> {1, 2},    2 -> {3, 1},    3 -> {1}
fixed points of mappings (64): A010882 1 -> {1, 2},    2 -> {3, 1},    3 -> {2, 3}
fixed points of mappings (65): A105500 1 -> {1, 2},    2 -> {3, 2},    3 -> {3, 4},    4 -> {1, 4}
fixed points of mappings (66): A060236 1 -> {1, 2, 1}, 2 -> {1, 2, 2}
fixed points of mappings (67): A105203 1 -> {1, 2, 1}, 2 -> {2, 3, 2}, 3 -> {3, 1, 3}
fixed points of mappings (68): A105646 1 -> {1, 2, 1}, 2 -> {3, 4, 3}, 3 -> {4, 3, 4}, 4 -> {2, 1, 2}
fixed points of mappings (69): A106825 1 -> {1, 2, 2, 2},              2 -> {2, 1, 1, 1}
fixed points of mappings (70): A105969 1 -> {1, 2, 3}, 2 -> {2, 1, 2}, 3 -> {3, 4, 5}, 4 -> {4, 3, 4}, 5 -> {5, 6, 1}, 6 -> {6, 5, 6}
fixed points of mappings (71): A026600 1 -> {1, 2, 3}, 2 -> {2, 3, 1}, 3 -> {3, 1, 2}
fixed points of mappings (72): A057215 1 -> {1, 2, 3}, 2 -> {2, 3, 1}, 3 -> {3, 1, 2} then 1 -> {0, 1}, 2 -> {1, 0}, 3 -> {0, 1}
fixed points of mappings (73): A105789 1 -> {1, 2, 3, 2, 1}, 2 -> {4, 3, 2, 3, 4}, 3 -> {2, 1, 4, 1, 2}, 4 -> {3, 4, 1, 4, 3}
fixed points of mappings (74): A106824 1 -> {1, 3},    2 -> {1, 3, 2, 2, 3},           3 -> {1, 3, 2, 3}
fixed points of mappings (75): A080757 1 -> {2, 1},    2 -> {2, 1, 1}
fixed points of mappings (76): A106826 1 -> {2, 1},    2 -> {2, 3},    3 -> {4, 3},    4 -> {4, 1}
fixed points of mappings (77): A105499 1 -> {2, 1, 2}, 2 -> {1, 3, 1}, 3 -> {3, 2, 3}
fixed points of mappings (78): A102668 1 -> {3},       2 -> {1},       3 -> {2, 1, 2}
fixed points of mappings (79): A105584 1 -> {3, 4},    2 -> {2, 3},    3 -> {1, 2},    4 -> {1, 4}
fixed points of mappings (80): A092444 a -> {a, b},    b -> {c, c},    c -> {a, b},  a -> {1}, b -> {1}, c -> {0}
fixed points of mappings (81): A038190 a -> {a, b},    b -> {a, d},    c -> {c, b},  d -> {c, d}  a -> {2, 2, 0, 1}, b -> {0, 2, 1, 1}, c -> {0, 2, 2, 1}, d -> {1, 2, 0, 1}
fixed points of mappings (82): A001316 a -> {a, 2a}
fixed points of mappings (83): A038573 a -> {a, 2a + 1}
fixed points of mappings (84): A006047 a -> {a, 2a, 3a}
fixed points of mappings (85): A048883 a -> {a, 3a}
fixed points of mappings|, <a NAME="FIXEDPOINTS_end">sequences related to (start):</a>
Flavius's sieve: see <a href="Sindx_Si.html#sieve">sieve, Flavius</a>
flexagons: see <a href="Sindx_He.html#hexaflexagons">hexaflexagons</a>
flimsy numbers: A005360*
Fo DIVIDER
folding  , <a NAME="fold">sequences related to folding things (start):</a>
folding (or bending) a piece of wire: A001997*, A001998*, A001444*, A066372*
folding a map: A001417, A001418
folding a piece of paper (dragon curves): A014577, A014707, A014709, A014710
folding a piece of paper, number of folds: A027383, A076024
folding a strip of stamps: A001011*, A001010, A002369, A000682, A000560, A000136, A001415, A001416, A007822
folding: see also <a href="Sindx_Me.html#meander">meanders</a>
folding| , <a NAME="fold_end">sequences related to folding things (start):</a>
Ford and Johnson sorting: A001768
forests  , <a NAME="forests">sequences related to (start):</a>
forests, binary: A003214
forests, labeled: A001858*, A138464 (triangle); A000272 (labeled rooted)
forests, random: A005196, A005197
forests, unlabeled: A005195*, A136605 (triangle)
forests: (1): A000248 A000949 A000950 A000951 A001862 A005198 A005199
forests: (2): A006544 A006611 A011800 A020865 A020867 A020869 A020872 A033184 A033185 A035054 A035055 A035056
forests: (3): A038000 A045739 A045740
forests: see also <a href="Sindx_Tra.html#trees">trees</a>
forests| , <a NAME="forests_end">sequences related to (start):</a>
fortnightly intervals: A001356, A051121
Fortunate numbers: A005235*, A045493, A046066, A035346
Foster census: A059282*
fountains of coins: A005169, A005170, A047998
four 4's problem : <a NAME="4x4">sequences related to problem of building numbers from digits (start):</a>
four 4's problem: (1) A036057 A048183 A048249 A060315 A060316 A061310 A066409 A068520 A069765 A070960 A071115 A071313
four 4's problem: (2) A071314 A071603 A071794 A071819 A071848 A071905 A071985 A078405 A078413
four 4's problem|: <a NAME="4x4_end">sequences related to problem of building numbers from digits (start):</a>
four-color theorem: A000934
fourth powers: A000583*
fractal sequences , <a NAME="fractal">sequences related to fractals (start):</a>
fractal sequences: A003602 A003603 A004736 A002260 A020903 A020906 A022446 A022447 A038001 A108738 A101279 A118816
fractal sequences|, <a NAME="fractal_end">sequences related to fractals (start):</a>
fractional base: defined in A024630
fractional base: see <a href="Sindx_Ba.html#base_fractional">base, fractional</a>
fractions: see also <a href="Sindx_Ra.html#rational">rational numbers</a>
fractions: see the separate <a href="frac.html">Index to Fractions</a>
francais: see <a href="Sindx_Fo.html#French">French</a>
Franel numbers: A000172*
free energy series  , <a NAME="free_energy_series">sequences related to (start):</a>
free energy series (1): A001393 A002890 A002891 A007276 A010107 A010108 A010109 A010110 A010557 A030044 A030045 A030047
free energy series (2): A030048 A030049 A056620
free energy series|, <a NAME="free_energy_series_end">sequences related to (start):</a>
free subsets: A007230, A007231, A007232, A007233
French , <a NAME="French">sequences related to (start):</a>
French language, sequences involving: A001062 A006969 A007005* A014254 A014287 A014367 A037193 A037194
French: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
French|, <a NAME="French_end">sequences related to (start):</a>
Friedman's sequence (or Harvey Friedman's sequence): see A014221
friendly numbers: A014567, A007770, A074902, A050972, A050973, A074873
friendly pairs: A050972, A050973
Fu DIVIDER
full sets: A001192*
Fullerenes: A007894*, A046880
functional cube roots: A052132 - A052139
functional determinants: A001970*
functional square roots: A048602/A048603 (sin x), A048606/A048609 (sinh x), A048605/A048604 (atan x), A048607/A048608 (log (1+x)), A052104/A052105 (exp x - 1)
functions, connected: A000081*
functions, with a fixed point: A000081
functors: A007322*
fundamental discriminants: A003658
fundamental units: (1) A003653 A003654 A006828 A006829 A006830 A006831 A006832 A014000 A014046 A014077 A023677 A023678
fundamental units: (2) A048941 A048942 A053370 A053371 A053372 A053373 A053374 A053375 A055735
fusc: A002487
Ga DIVIDER
G.C.D.: see entries under <a href="Sindx_Ga.html#gcd">GCD</a>
g.c.d.: see entries under <a href="Sindx_Ga.html#gcd">GCD</a>
G.F.: see <a href="Sindx_Ge.html#generating_functions">generating functions</a>
g.f.: see <a href="Sindx_Ge.html#generating_functions">generating functions</a>
Gaelic: A001368
Gaelic: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Galego: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
games , <a NAME="games">sequences related to (start):</a>
games, born on day n: A047995, A037142, A065401, A065402, A065407
games, Grundy's game: see <a href="Sindx_Gre.html#Grundy">Grundy's game</a>
games: see also <a href="Sindx_Ch.html#checkers">checkers</a>
games: see also <a href="Sindx_Ch.html#chess">chess</a>
games: see also <a href="Sindx_Mag.html#Mancala">Mancala</a>
games: see also <a href="Sindx_To.html#Hanoi">Towers of Hanoi</a>
games: see also under individual names
games|, <a NAME="games_end">sequences related to (start):</a>
gamma (Euler-Mascheroni constant), <a NAME="gamma_constant">sequences related to (start):</a>
gamma (Euler-Mascheroni constant): A002852* (continued fraction for), A001620* (decimal expansion of)
gamma (Euler-Mascheroni constant)| <a NAME="gamma_constant_end">sequences related to (start):</a>
gamma function, <a NAME="gamma_function">sequences related to (start):</a>
gamma function: A005446, A005147, A001164, A005146, A005447, A001163
gamma function: see also <a href="Sindx_Fa.html#factorial">factorials</a>
gamma function| <a NAME="gamma_function_end">sequences related to (start):</a>
gaps: A002386, A005250, A002540, A000101, A000230, A000232, A001549, A001632
gaps: see also <a href="Sindx_Pri.html#gaps">primes, gaps between</a>
gates:: A005610, A005611, A005609, A005608
Gauss-Kuzmin-Wirsing constant: A038517
Gaussian binomial coefficients, <a NAME="Gaussian_binomial_coefficients">sequences related to (start):</a>
Gaussian binomial coefficients: (1): A006116 (q=2), A006117, A006118, A006119, A006120, A006121, A006122, A006099, A006098, A006104, A006103, A006109, A006108, A006115
Gaussian binomial coefficients: (2): A006114, A006095, A006100, A006096, A006105, A006097, A006111, A006101, A006110, A006106, A006102, A006112, A006107, A006113
Gaussian binomial coefficients: A006516* (Maple code)
Gaussian binomial coefficients: A022166 (triangle of, q=2)
Gaussian binomial coefficients: see also A006516
Gaussian binomial coefficients| <a NAME="Gaussian_binomial_coefficients_end">sequences related to (start):</a>
Gaussian integers and primes  , <a NAME="gaussians">sequences related to (start):</a>
Gaussian integers and primes (1): A002145 A006495 A006496 A027206 A036693 A036694 A036695 A036696 A036697 A036698 A036699 A036700
Gaussian integers and primes (2): A036701 A036702 A036703 A036704 A036705 A036706 A036707 A036708 A036709 A036710 A036711 A036712
Gaussian integers and primes (3): A036713 A036714 A036715 A036716 A045326 A055025 A055026 A055027 A055028 A055029 A055683 A057352
Gaussian integers and primes (4): A057368 A057429 A058767 A058770 A058771 A058772 A058775 A058777 A058778 A058779 A058782 A062327
Gaussian integers and primes (5): A062711 A073253 A078458 A078908 A078909 A078910 A078911
Gaussian primes: A055025, A055026, A055027, A055028, A055029
Gaussian primes: see also entries under <a href="Sindx_Ga.html#gaussians">Gaussian integers</a>
Gaussian primes| , <a NAME="gaussians_end">sequences related to (start):</a>
GCD , <a NAME="gcd">sequences related to (start):</a>
GCD(x,y): A003989*, A050873*, A072030*
GCD, greedy sequence: see <a href="Sindx_Ed.html#EKG">EKG sequence</a>
GCD: A007464, A006579
GCD: the canonical spelling for "greatest common divisor" in the OEIS is GCD (not gcd) (except of course in Maple and PARI lines)
gcd: the canonical spelling for "greatest common divisor" in the OEIS is GCD (not gcd) (except of course in Maple and PARI lines)
gcd|, <a NAME="gcd_end">sequences related to (start):</a>
Ge DIVIDER
generalized Fermat primes: see <a href="Sindx_Pri.html#primes">primes, Fermat, generalized</a>
generalized Fermat primes: see primes, generalized Fermat
generated by substitutions:: A001030, A007001, A006697, A006977, A006978
generating functions , <a NAME="generating_functions">sequences related to (start):</a>
generating functions of the form (1+x)/(1-kx) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952
generating functions of the form (1+x)/(1-kx) for k=13 to 30: A170732 A170733 A170734 A170735 A170736 A170737 A170738 A170739 A170740 A170741 A170742 A170743 A170744 A170745 A170746 A170747 A170748
generating functions of the form (1+x)/(1-kx) for k=31 to 50: A170749 A170750 A170751 A170752 A170753 A170754 A170755 A170756 A170757 A170758 A170759 A170760 A170761 A170762 A170763 A170764 A170765 A170766 A170767 A170768 A170769
generating functions of the form Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b): (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
generating functions of the form Prod_{k>=c} (1+a*x^(2^k-1)+b*x^2^k)) for the following values of (a,b,c): (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694
generating functions satisfying a cubic: A001764 A007863 A036759 A036765 A078531 A088927 A067955 A102403 A120984 A120985 A128725 A128729 A128736
generating functions satisfying equations of the form A(x)=1+zA(x)^k: A002293-A002296, A007556, A062994, A062744
generating functions satisfying equations of the form r*A(x) = c + b*x + A(x)^n: A120588 - A120607
generating functions, for definition see <a href="http://en.wikipedia.org/wiki/Generating_function">Wikipedia article</a>
generating functions|, <a NAME="generating_functions_end">sequences related to (start):</a>
Genocchi medians: A005439
Genocchi numbers , <a NAME="Genocchi">sequences related to (start):</a>
Genocchi numbers: A001469*, A036968
Genocchi numbers: see also A002317
Genocchi numbers|, <a NAME="Genocchi_end">sequences related to (start):</a>
genus , <a NAME="genus">sequences related to (start):</a>
genus, of modular group, A001617, A001767
genus-1:: A006387, A006386, A006295, A006297, A006296
genus:: A003639, A003638, A000933, A003636, A003637, A003171, A003644, A005527, A000934, A005431, A005525, A005526, A006298, A006299, A006301
genus|, <a NAME="genus_end">sequences related to (start):</a>
geometrical configurations: see <a href="Sindx_Con.html#configurations">configurations</a>
geometries , <a NAME="geometries">sequences related to (start):</a>
geometries : A002773*, A004069, A031501
geometries, linear: A001200*, A001548* (connected), A005426
geometries: see also <a href="Sindx_Mat.html#matroid">matroids</a>
geometries| <a NAME="geometries_end">sequences related to (start):</a>
Germain primes: see <a href="Sindx_Pri.html#primes">primes, Germain</a>
German: A007208, A037199, A037200, A001061
German: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
GF(2)[X]-polynomials , sequences containing or operating on <a NAME="GF2X">(start):</a> (These sequences assume that the GF(2)[X]-polynomial is encoded in binary expansion of n like this: n=11, 1011 in binary, stands for polynomial x^3+x+1, n=25, 11001 in binary, stands for polynomial x^4+x^3+1)
GF(2)[X]-polynomials, addition table, i.e. XOR(x,y), A003987
GF(2)[X]-polynomials, bijections from/to natural numbers, preserving multiplicative structures, A091202-A091203, A091204-A091205
GF(2)[X]-polynomials, GCD(x,y), table of, A091255
GF(2)[X]-polynomials, irreducible and also prime in N, A091206
GF(2)[X]-polynomials, irreducible and non-primitive, A091252
GF(2)[X]-polynomials, irreducible and primitive, A091250*, A058947, A011260
GF(2)[X]-polynomials, irreducible but composite in N, A091214
GF(2)[X]-polynomials, irreducible, A014580*, A058943, A001037
GF(2)[X]-polynomials, irreducible, characteristic function, A091225
GF(2)[X]-polynomials, irreducible, order of each, A059478
GF(2)[X]-polynomials, LCM(x,y), table of, A091256
GF(2)[X]-polynomials, Matula-Goebel-tree analogues, A091238, A091239, A091240
GF(2)[X]-polynomials, Moebius-analogue, A091219
GF(2)[X]-polynomials, multiples of x+1, A048724
GF(2)[X]-polynomials, multiples of x+1, shifted once right, A003188
GF(2)[X]-polynomials, multiples of x^2+1, A048725
GF(2)[X]-polynomials, multiples of x^2+x+1, A048727
GF(2)[X]-polynomials, multiples of x^2+x, A048726
GF(2)[X]-polynomials, multiplication table, A048720, A091257
GF(2)[X]-polynomials, number of distinct irreducible divisors, A091221
GF(2)[X]-polynomials, number of divisors, A091220
GF(2)[X]-polynomials, number of irreducible divisors, A091222
GF(2)[X]-polynomials, of the form x^n+1, A000051
GF(2)[X]-polynomials, of the form x^n+1, number of distinct irreducible divisors, A000374
GF(2)[X]-polynomials, of the form x^n+1, number of irreducible divisors, A091248
GF(2)[X]-polynomials, powers of x+1, A001317
GF(2)[X]-polynomials, powers of x^2+1, A038183
GF(2)[X]-polynomials, powers of x^2+x+1, A038184
GF(2)[X]-polynomials, powers, table of, A048723
GF(2)[X]-polynomials, quasi-factorial analogue, A048631
GF(2)[X]-polynomials, reducible and also composite in N, A091212
GF(2)[X]-polynomials, reducible but prime in N, A091209
GF(2)[X]-polynomials, reducible, A091242, A091254
GF(2)[X]-polynomials, smallest m >= n, such that polynomial with code m is irreducible, A091228
GF(2)[X]-polynomials, squares, A000695
GF(2)[X]-polynomials: see also <a href="Sindx_Tri.html#trinomial">Trinomials over GF(2)</a>
GF(2)[X]-polynomials|, sequences containing or operating on <a NAME="GF2X_end">(start):</a> (These sequences assume that the GF(2)[X]-polynomial is encoded in binary expansion of n like this: n=11, 1011 in binary, stands for polynomial x^3+x+1, n=25, 11001 in binary, stands for polynomial x^4+x^3+1)
gf.: see <a href="Sindx_Ge.html#generating_functions">generating functions</a>
Gijswijt's sequence , <a NAME="Gijswijt">sequences related to (start):</a>
Gijswijt's sequence: A090822
Gijswijt's sequence: generalizations: A091975, A091976, A092331-A092335
Gijswijt's sequence: generalizations: A094321 (greedy version of second-order sequence)
Gijswijt's sequence: generalizations: A094781 (two-dim. version)
Gijswijt's sequence: see also under <a href="Sindx_Cu.html#curling_numbers">curling number transform</a>
Gijswijt's sequence|, <a NAME="Gijswijt_end">sequences related to (start):</a>
Gilbreath's conjecture, <a NAME="Gilbreath">sequences related to (start):</a>
Gilbreath's conjecture: A036262*, A036261
Gilbreath's conjecture| <a NAME="Gilbreath_end">sequences related to (start):</a>
girth: see graphs, girth of
Giuga numbers: A007850*
Glaisher numbers, <a NAME="Glaisher">sequences related to (start):</a>
Glaisher's chi numbers: A002171*, A002172
Glaisher's G numbers: A002111*
Glaisher's H numbers: A002112*
Glaisher's H' numbers: A002114*
Glaisher's I numbers: A047788*/A047789*
Glaisher's J numbers: A002325*
Glaisher's T numbers: A002439*, A002811
Glaisher| numbers, <a NAME="Glaisher_end">sequences related to (start):</a>
glass worms: see vers de verres
Gleason's theorem: A008621, A008620
gluons: A005415
glycols: A000634
Go DIVIDER
Go games: A007565* A048289* A096259
Goedel, Escher, Bach, <a NAME="GEB">sequences related to (start):</a>
Goedel, Escher, Bach: A005185, A005206, A005228, A005374, A005375, A005376, A005378, A005379, A006877, A006878, A006884, A006885, A030124, A033958, A033959
Goedel, Escher, Bach: see also <a href="Sindx_Ho.html#Hofstadter">Hofstadter-type sequences</a>
Goedel, Escher, Bach| <a NAME="GEB_end">sequences related to (start):</a>
Goellnitz's theorem: A056970
Golay codes, <a NAME="Golay">sequences related to (start):</a>
Golay codes: A001380*, A002289, A105683*, A105684
Golay codes| <a NAME="Golay_end">sequences related to (start):</a>
Golay-Rudin-Shapiro sequence: A020985*, A020987*
Goldbach conjecture, <a NAME="Goldbach">sequences related to (start):</a>
Goldbach conjecture: A001031*, A002372*, A002373*, A002374*, A002375*, A045917*, A006307*
Goldbach conjecture: see also (1): A001172, A002091, A002092, A007697, A008929, A008932, A014092, A016067, A025017, A025018, A025019, A042978, A045917
Goldbach conjecture: see also (2): A045919, A045922, A046903, A046920, A046921, A046922, A046923, A046924, A046925, A046926, A046927
Goldbach conjecture: see also (3): A051034, A025583, A000607, A051345, A007534, A065577
Goldbach conjecture| <a NAME="Goldbach_end">sequences related to (start):</a>
golden ratio phi  , <a NAME="GOLDEN">sequences related to (start):</a>
golden ratio phi (or tau) = (1+sqrt(5))/2: A001622* (decimal expansion), A000012* (continued fraction)
golden ratio phi (or tau) = (1+sqrt(5))/2: binary expansion: A068432, A004714, A169868, A004555
golden ratio phi (or tau): see also A002390, A007572
golden ratio phi| , <a NAME="GOLDEN_end">sequences related to (start):</a>
golden sieve: see <a href="Sindx_Si.html#sieve">sieve, golden</a>
Golomb rulers , <a NAME="Golomb">sequences related to (start):</a>
Golomb rulers : A003022* (length of), A036501* (number of), A039953* (triangle of minimal), A078106 (missed distances), A054578 (number of)
Golomb rulers, optimal, with 4 through 23 marks: (1) A079283 & A031869, A079287 & A031870, A079423 & A031871, A079425 & A031872, A079426 & A031873,
Golomb rulers, optimal, with 4 through 23 marks: (2) A079430 & A031874, A079433 & A031875, A079434, A079435, A079454, A079467
Golomb rulers, optimal, with 4 through 23 marks: (3) A079604, A079605, A079606, A079607, A079608, A079625, A079634
Golomb rulers: see also <a href="Sindx_Ab.html#additive">additive bases</a>
Golomb rulers|, <a NAME="Golomb_end">sequences related to (start):</a>
Golomb's sequence: A001462*
golygons: A006718*, A007219*
good numbers: A000696
Goodstein sequences: A056041 A056004 A059934 A057650 A056193 A059933 A059935 A059936
gossip problem: A007456*, A058992
Gould's sequence: A001316*
gp: see <a href="Sindx_Par.html#PARI">PARI</a>
Gra DIVIDER
graceful: see <a href="Sindx_Gra.html#graphs">graphs, graceful</a>
Graham, Ron's sequence: A006255, A066400, A066401
Gram points: A002505
grandchildren of a binary vector: A057606, A057607, A000124
graph reconstruction problem: A006652, A006653, A006654, A006655
graphical partitions  , <a NAME="graph_part">sequences related to (start):</a>
graphical partitions: A000569 A001130 A004250 A004251 A007721 A007722 A029889 A029890 A029891 A029892 A029893 A029894
graphical partitions| , <a NAME="graph_part_end">sequences related to (start):</a>
graphs  , <a NAME="graphs">sequences related to (start):</a>
graphs : A000088* (unlabeled), A008406* (unlabeled); A006125* (labeled), A000664, A006896, A006897, A007111, A008406
graphs, 2-connected: A002218*, A021103*
graphs, 3-connected, planar: A000109*, A049337*, A000944*, A005645*, A002880*
graphs, 3-connected, planar: see also A006445, A007083, A007084, A007085, A047051
graphs, 3-connected: A006290*, A052444*, A005644*, A007100*
graphs, 4-valent: A005815, A005816
graphs, acyclic directed: A003087* (labeled), A003024 (labeled)
graphs, asymmetric: A003400
Graphs, balanced, A005194, A005193
Graphs, bicolored, A007140, A007139
graphs, biconnected: see graphs, 2-connected
Graphs, bipartite, A006823, A006612, A005142*, A004100, A001832, A006824, A006825, A006714
graphs, bipartite, by number of edges: A000217 A050534 A053526 A053527 A053528
graphs, bipartite: A033995*, A005142* (connected)
graphs, blocks: see graphs, nonseparable
graphs, bridgeless: A007146*, A007145
graphs, broadcast: A007192
Graphs, by cliques, A005289
Graphs, by cutting center, A002887
graphs, by girth: (1) A000066 A006787 A006856 A006923 A006924 A006925 A006926 A006927 A014371 A014372 A014374 A014375
graphs, by girth: (2) A014376 A033886 A037233 A054760 A058275 A058276 A058343 A058348
graphs, by numbers of nodes and edges: A008406
graphs, cage: A052453, A052454
graphs, Cayley: A000022 A000200 A006792 A006793 A049287 A049289 A049297 A049309
graphs, chordal: A007134*, A058862*
graphs, claw-free: A022562* (connected), A022563, A022564
Graphs, colored, A002027, A002031, A002032, A002028, A000684, A002029, A002030, A000685, A005333, A000683, A000686, A006201, A005334, A006202
graphs, common symbols for: C_n: The cycle graph on n vertices.
graphs, common symbols for: D_4: The graph on 4 vertices with the edges {1,2}, {1,3}, {2,3} and {1,4}.
graphs, common symbols for: K_n: The complete graph on n vertices.
graphs, common symbols for: O_5: The K_5 graph with one edge removed.
graphs, common symbols for: O_6: The octahedral graph.
graphs, common symbols for: P_n: The path graph on n vertices.
graphs, common symbols for: S_4: The star (or complete bipartite) graph on 4 vertices with the edges {1,2}, {1,3} and {1,4}.
graphs, common symbols for: S_5: The star (or complete bipartite) graph on 5 vertices.
graphs, common symbols for: W_4: The graph on 4 vertices with the edges {1,2}, {1,3}, {2,3}, {2,4} and {3,4}.
graphs, common symbols for: W_5: The graph on 5 vertices with the edges {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,5}, {3,4} and {4,5}.
Graphs, complete, A000933, A000241, A007333, A006600
Graphs, complexity of, A006237, A006235
graphs, connected : A001349* (unlabeled), A054923*, A046742* (unlabeled); A001187* (labeled); A003094* (planar)
graphs, connected : table of by numbers of edges and nodes: A046742*, A054923*
graphs, connected labeled, with n edges and n+k nodes for k=0..8: A057500 A061540 A061541 A061542 A061543 A096117 A061544 A096150 and A096224.
graphs, connected regular, see graphs, regular connected
Graphs, connected, A005703, A001429, A001437, A005636, A002905, A000226, A004108, A006290, A007112, A000368, A001436, A001435, A001866
graphs, connected, by number of edges: A002905*, A046091 (connected planar), A066951
graphs, crossing number of: see <a href="Sindx_Cor.html#crossing">crossing numbers of graphs</a>
graphs, cubic: see graphs, trivalent
Graphs, cutting numbers of, A002888
Graphs, cycle, A007389, A007388, A007387, A007391, A007390, A007392, A007393, A007394
Graphs, cycles in, A006184
Graphs, de Bruijn, A006946
Graphs, degree sequences of, A005155
graphs, directed, see digraphs
Graphs, disconnected, A000719
Graphs, Euler, A002854
Graphs, Eulerian, A007124, A007127, A007128, A007131, A007132, A007129, A007125, A005143, A007081, A005780, A003049, A007126, A007130, A007133
graphs, even: A001188*
Graphs, functional, A001373
Graphs, genus of, A000933
graphs, girth of: (1) A000066 A006787 A006856 A006923 A006924 A006925 A006926 A006927 A014371 A014372 A014374 A014375
graphs, girth of: (2) A014376 A033886 A037233 A054760 A058275 A058276 A058343 A058348 A058861
graphs, graceful: A004137 A005488 A006967 A033472
graphs, graceful: A004137 A005488 A033472
graphs, Hamiltonian cycles on square grid:  A003763, A120443, A140519, A140521
graphs, Hamiltonian, on the n-cube: see also <a href="Sindx_Gra.html#Gray">Gray codes</a>
graphs, Hamiltonian: (1) A000103 A000264 A000356 A001186 A001906 A003042 A003043 A003122 A003123 A003216 A003435 A003436
graphs, Hamiltonian: (2) A003437 A005144 A005389 A005390 A005391 A005979 A006069 A006070 A006791 A006795 A006796 A006797
graphs, Hamiltonian: (3) A006798 A006864 A006865 A007030 A007031 A007032 A007033 A007035 A007036 A007083 A007084 A007085
graphs, Hamiltonian: (4) A022564 A027362 A031878 A049366 A057112 A060135 A063546
graphs, Hamiltonian: see also <a href="Sindx_Ro.html#rook_tours">rook tours</a>
Graphs, independence number of, A006946
Graphs, independent sets in, A007386, A007385, A007384, A007391, A007383, A007382, A007390, A007392, A007393, A007394
graphs, inseparable: see graphs, nonseparable
Graphs, interval, A005217, A007123, A005975, A007122, A005219, A005976, A005977, A005215, A005218, A005978, A005974, A005216, A005973
graphs, interval: see <a href="Sindx_In.html#interval">interval graphs</a>
graphs, irreducible: A005643
graphs, K_4-free: A052450, A052451
graphs, least number of edges in: A004401
graphs, line: A003089
graphs, mating: A006024
graphs, misleading: see <a href="Sindx_De.html#deceptive">deceptive plots</a>
graphs, Moore: A005007*
graphs, nonseparable (or blocks): A002218*, A003317*, A004115*, A013922*, A001072, A054316, A054317, A006290
Graphs, of maximal intersecting sets, A007007, A007008, A007006
Graphs, oriented, A002785, A005639, A007081, A007110, A007109
Graphs, partition, A007269, A007268
Graphs, path, A007381, A007380, A007386, A007385, A007384, A007383, A007382
graphs, perfect: A052431*, A052433
Graphs, planar, A006401, A006400, A003094, A006791, A003055, A006395, A006394, A005964
graphs, planar: A002841 (self-dual)
graphs, planar: A005470* (unlabeled), A066537* (labeled), A096332* (connected labeled)
graphs, planar: A049334* and A003094* (connected), A049336* and A021103* (2-connected), A049337* and A000944* (3-connected)
graphs, planar: see also <a href="Sindx_Map.html#MAPS">maps, planar</a>
graphs, planar: see also <a href="Sindx_Ph.html#planar">planar vs plane</a>
graphs, planar: see also A007083, A007084, A007085, A034889
graphs, plane: see also <a href="Sindx_Ph.html#planar">planar vs plane</a>
graphs, pointed: see graphs, rooted
Graphs, polygonal, A002560
Graphs, polyhedral, A007026, A002840, A007024, A006866, A007029, A006867, A006869, A000287, A007027, A007025, A007028
Graphs, radius of, A007008
graphs, regular connected, of degree k: A002851 (k=3); A006820 (k=4); A006821 (k=5); A006822 (k=6); A014377 (k=7); A014378 (k=8); A014381 (k=9); A014382 (k=10); A014384 (k=11)
Graphs, regular, A005176, A005177, A006820, A006821, A006822
graphs, rooted, triangle of: A070166
graphs, see also <a href="Sindx_1.html#1_factorizations">1-factorizationsttice</a>
graphs, see also: A000717, A001430, A001431, A001432, A001433, A001434, A003083, A004252, A005273, A005274, A005275, A007149
Graphs, self-complementary, A000171, A002785
Graphs, self-converse, A005639
Graphs, self-dual, A002841, A004104
graphs, series-parallel: see <a href="Sindx_Se.html#series_parallel">series-parallel networks</a>
Graphs, series-reduced, A003514, A002935, A006289, A003515
Graphs, signed, A004104, A004102
Graphs, spectra of, A006608
Graphs, splittance of, A007183
Graphs, squarefree, A006786, A006855
Graphs, stable, A006545
Graphs, star, A002935
Graphs, Steinhaus, A003660, A003661
Graphs, tensor sum of, A006237
Graphs, transitive, A006799*, A006800
graphs, triangle of numbers of, connected, unlabeled: A054924*, A046751, A076263, A054923, A046742.
Graphs, triangle-free, A006785, A006903
graphs, triangle: A000080*
Graphs, triangles in, A006600
graphs, triangulated: A007134*
graphs, trivalent: A005638*, A002851* (connected), A032355* (transitive), A059282* (symmetric)
Graphs, trivalent:: see also A006796, A006797, A000066, A005967, A002851, A005638, A003175, A006795, A005814, A002831, A006798, A006607, A002830, A006713, A006712, A006188, A006714, A007101, A007103, A007102, A007100, A007099, A004109, A002829
Graphs, unicyclic, A006545
Graphs, valence of, A007007
Graphs, vertex-degree sequences of, A006869
Graphs, vertex-transitive, A006792, A006793
graphs, with loops, triangle of: A070166
Graphs, with no isolated vertices, A006648, A006649, A002494, A006647, A006651, A006650
Graphs, without endpoints, A004110
Graphs, without points of degree 2, A005637
graphs: see also <a href="Sindx_To.html#tournament">tournaments</a>
graphs| , <a NAME="graphs_end">sequences related to (start):</a>
grasshopper sequence: A007319
Gray codes, <a NAME="Gray">sequences related to (start):</a>
Gray codes: A003042, A003043, A006069, A006070, A091299, A091302, A066037
Gray codes: A005811, A003100, A003188, A014550, A006068
Gray codes: see also <a href="Sindx_Be.html#bell_ringing">bell ringing</a>
Gray codes| <a NAME="Gray_end">sequences related to (start):</a>
Gre DIVIDER
greatest common divisor: see entries under <a href="Sindx_Ga.html#gcd">GCD</a>
Greedy algorithm:: A006892, A006894, A006893
greedy GCD sequence: see <a href="Sindx_Ed.html#EKG">EKG sequence</a>
greedy rational packing sequence: A066720*, A066721*, A066775, A066657/A066658, A066848, A066849
Green's function , <a NAME="Green">sequences related to (start):</a>
Green's function:: A003301, A003283, A003299, A003282, A003302, A003280, A003284, A003300, A003298, A003281
Green's function|, <a NAME="Green_end">sequences related to (start):</a>
greengrocer's numbers: A002412*
Greg trees: see <a href="Sindx_Tra.html#trees">trees, Greg</a>
Grids:: A005418, A007543, A007544
Grossman's constant: A085835
group: see <a href="Sindx_Gre.html#groups">groups</a>
groupoids  , <a NAME="groupoids">sequences related to (start):</a> [This word has several different interpretations!]
groupoids , A001329* (unlabeled) A001424 A002489* (labeled) A079171
groupoids, 1 idempotent: A030253* A030254 A030255 A030263 A030264 A030265 A030271
groupoids, anti-associative: A079179 A079180 A079181
groupoids, anti-commutative: A079189 A079190 A079191
groupoids, as categories with inverses, connected: A140185, A140186, A140187
groupoids, as categories with inverses: A140188, A140189, A140190
groupoids, associative: see <a href="Sindx_Se.html#semigroups">semigroups</a>
groupoids, asymmetric: A030245* A030248 A030251 A030255 A030258 A030261 A030264 A030271 A038019 A038022 A038023
groupoids, by idempotents: A038018* A038019 A038020 A038021 A038022 A038023
groupoids, commutative (1): A001425* (unlabeled) A023813* (labeled) A030256 A030257 A030258 A030259 A030260 A030261 A030262 A030263 A030264 A030265
groupoids, commutative (2): A038016 A038017 A076113 A038021 A038022 A038023 A079185 A079195 A079196 A079197 A090598 A090599
groupoids, idempotent: A030247* (unlabeled) A030248 A030249 A030257 A030258 A030259 A038015 A038017 A076113 A090588* (labeled)
groupoids, no idempotents: A030250* A030251 A030252 A030260 A030261 A030262
groupoids, non-anti-associative: A079176 A079177 A079178
groupoids, non-anti-commutative: A079186 A079187 A079188
groupoids, non-associative: A079172 A079173 A079174 A079192 A079193 A079194 A079195 A079196 A079197
groupoids, non-commutative: A079182 A079183 A079184 A079192 A079193 A079194
groupoids, pointed: A006448* A038015 A038016 A038017
groupoids, see also: A079202 A079203 A079204 A079206
groupoids, self-converse: A029850* A090604
groupoids, symmetric: A030246 A030249 A030252 A030254 A030256 A030259 A030262 A030265 A038020
groupoids, with identity: A090598 A090599 A090600 A090601* A090602* A090603 A090604
groupoids: see also: <a href="Sindx_Gre.html#groups_modular">groups</a>, <a href="Sindx_Qua.html#quasigroups">quasigroups</a>, <a href="Sindx_Se.html#semigroups">semigroups</a>
groupoids| , <a NAME="groupoids_end">sequences related to (start):</a> [This word has several different interpretations!]
groups  , <a NAME="groups">sequences related to (start):</a>
groups, A000001* (number of groups of order n), A000679* (number of order 2^n), A034383*
groups, abelian, every group of this order is: A051532
groups, abelian: A000688*, A034382*, A046054-A046056, A050360, A051532
groups, alternating: A000702, A001710, A007002
groups, alternating: see also <a href="Sindx_Al.html#ALTERNATINGGROUP">alternating group A_m, degrees of irreducible representations of</a>
groups, automorphism group of: A059773
groups, binary icosahedral: A008651
groups, binary octahedral: A008647
groups, braid, see <a href="Sindx_Br.html#braids">braids</a>
Groups, chain of subgroups in S_n, A007238
groups, conjugacy classes: A073043*, A003061*, A002319*, A006379*, A000702, A000638, A029726, A045615, A006951, A006952, A003606
groups, crystallographic: see groups, space
groups, cyclic (1): A001034 A001443 A002956 A006204 A006205 A006379 A007687 A007688 A008610 A008611 A008646
groups, cyclic (2): A008976 A009490 A019536 A034381 A037221 A046072 A047680 A049287 A049288 A049289 A049297 A049309
groups, cyclic (3): A051625 A051636 A053651 A053658 A053660 A054522 A057731
groups, cyclic, every group of this order is: A003277, A050384
Groups, dihedral, A007503
groups, Euclidean: see groups, space
groups, free abelian: A007322
Groups, general linear, A006952, A006951, A003606
Groups, generators for, A001691
Groups, invariants of, A002956
groups, labeled: A034381, A034382, A034383*, A058161-A058163
groups, least inverse, A046057
Groups, Lorentzian, A005793, A005794
groups, maximal number of subgroups in: A018216, A061034, A083573
groups, modular : <a NAME="groups_modular">sequences related to (start):</a>
groups, modular: (1) A001766 A001767 A004048 A005133 A005793 A005794 A027364 A027633 A027634 A027638 A027639 A027672
groups, modular: (2) A037944 A037945 A037946 A037947 A054886 A063759 A001617
groups, modular|: <a NAME="groups_modular_end">sequences related to (start):</a>
groups, Monster simple group: see <a href="Sindx_Mo.html#Monster">Monster simple group</a>
Groups, multiplicative, A007230, A007232, A007233, A007231
groups, nilpotent, every group of this order is: A056867, A056868
groups, nonabelian: A060689*, A003061
groups, number of, A000001*, A060689*, A000679, A046057, A046058, A046059
groups, of order n: A000001, 2^n: A000679, 3^n: A090091, 5^n: A090130, 7^n: A090140
groups, of Rubik cubes: see under <a href="Sindx_Ru.html#Rubik">Rubik cube</a>
groups, of tournaments: see <a href="Sindx_To.html#tournament">tournaments</a>
groups, only one of this order: A003277, A050384
Groups, orthogonal, A003053
groups, perfect: A060793
groups, permutation, primitive: A000019*, A023675*
groups, permutation, transitive: A002106*, A023676*
groups, permutation: A000637*, A000638*, A005432*
groups, pointed: A126103, A126102
groups, see also: A046058, A046059, A053403
groups, shuffle: A007346 A014525 A014766 A014767
groups, simple: A005180* (orders of), A001034* (orders of noncyclic), A001228* (sporadic), A008976
groups, simple: see also A006379
groups, solvable, every group of this order is: A056866
groups, space: A004029*, A006227*, A004027*, A004028*, A006226, A005031, A007308
Groups, symmetric, A000701, A003040, A007234, A005012, A001691
groups, symmetric: see also <a href="Sindx_Sw.html#SYMMETRICGROUP">symmetric group S_m, degrees of irreducible representations of</a>
groups, tiling: see groups, space
groups| , <a NAME="groups_end">sequences related to (start):</a>
Grundy's game, <a NAME="Grundy">sequences related to (start):</a>
Grundy's game: A002188, A036685, A036686
Grundy's game| <a NAME="Grundy_end">sequences related to (start):</a>
Gudermannian: A028296*
Ha DIVIDER
h.c.p. (hexagonal close packing), <a NAME="hcp">sequences related to (start):</a>
h.c.p., coordination sequence: A007899
h.c.p., crystal ball sequence: A007202
h.c.p., numbers represented by: A005870
h.c.p., theta series of: A004012*, A005871, A005872, A005873, A005874, A005888, A005889, A005890
h.c.p.: see also A019298
h.c.p.| (hexagonal close packing), <a NAME="hcp_end">sequences related to (start):</a>
Hadamard matrices , etc., <a NAME="Hadamard">sequences related to (start):</a>
Hadamard matrices, excess of: A004118
Hadamard matrices, mass of: A048615*/A048616*
Hadamard matrices, number of: A007299*, A036297*
Hadamard matrices, orders of: A019442
Hadamard matrices, regular: see A016742
Hadamard maximal determinant problem: A003432*, A003433, A036297, A051753
Hadamard| matrices , etc., <a NAME="Hadamard_end">sequences related to (start):</a>
half-totient function: A023022
Halving:: A003155, A006577
Hamilton , <a NAME="Hamilton">sequences related to (start):</a>
Hamilton cycles, paths, graphs: see <a href="Sindx_Gra.html#graphs">graphs, Hamiltonian</a>
Hamilton numbers: A000905*, A002090, A006719
Hamiltonian cycles: see <a href="Sindx_Gra.html#graphs">graphs, Hamiltonian</a>
Hamiltonian graphs: see <a href="Sindx_Gra.html#graphs">graphs, Hamiltonian</a>
Hamiltonian paths or cycles on the n-cube: see also <a href="Sindx_Gra.html#Gray">Gray codes</a>
Hamiltonian paths: see <a href="Sindx_Gra.html#graphs">graphs, Hamiltonian</a>
Hamiltonian polyhedra: see <a href="Sindx_Gra.html#graphs">graphs, Hamiltonian</a>
Hamilton| <a NAME="Hamilton_end">sequences related to (start):</a>
Hamming sequence: A051037
Hankel function: A002514
Hannah Rollman's numbers: A048992*
Hanoi, see <a href="Sindx_To.html#Hanoi">Towers of Hanoi</a>
happy factorizations: A007696, A007697, A007698
happy numbers: A007770*, A038497, A001273
happy numbers: see also A031177, A068571, A046519, A035502, A035503, A055629
Harary and Palmer, <STRONG>Graphical Enumeration</STRONG>, <a href="HPGE.html"><STRONG>sequences found in</STRONG></a>
hard-hexagon model: A007236
harmonic , <a NAME="harmonic">sequences related to (start):</a>
harmonic coefficients, triangle of: A027858
harmonic means: (1) A001599 A001600 A006086 A006087 A007340 A046793 A046794 A046795 A046796 A046797 A053626 A053627
harmonic means: (2) A053628 A053629 A055081 A056136
harmonic numbers: A001599*, A001008*/A002805*, A035527
harmonic numbers: see also A001600, A008380, A035047 A035048 A046024 A051046 A052488 A055573
harmonic series, odd: A074599/A025547
harmonic series: A002387*, A004080*
harmonic series: see also A004796, A004980
harmonic triangle of Leibniz: A003506*
harmonic triangle of Leibniz: see also A002457 A007622 A046200 A046201 A046202 A046203 A046204 A046205 A046206 A046207 A046208 A046212
harmonic|, <a NAME="harmonic_end">sequences related to (start):</a>
Harshad numbers: A005349*
Harvey Friedman's sequence: see A014221
Hauptmodul series: A007325
Havender tableaux: A007345
HCF (highest common factor) is written as <a href="Sindx_Ga.html#gcd">GCD</a> (greatest common divisor) in the OEIS
hcf (highest common factor) is written as <a href="Sindx_Ga.html#gcd">GCD</a> (greatest common divisor) in the OEIS
HCF: the canonical spelling in the OEIS is GCD (nor HCF or gcd) for "greatest common divisor"
hcf: the canonical spelling in the OEIS is GCD (nor hcf or gcd) for "greatest common divisor"
hcp: see <a href="Sindx_Ha.html#hcp">h.c.p</a>
He DIVIDER
Heawood conjecture, <a NAME="Heawood">sequences related to (start):</a>
Heawood conjecture: A000934*
Heawood conjecture| <a NAME="Heawood_end">sequences related to (start):</a>
Hebrew: A0A027684
Hebrew: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Heegner numbers: A003173
hendecagon is spelled 11-gon in the OEIS
heptagonal numbers: A000566*
heptagonal pyramidal numbers: A002413*
Hermite constant: A007361*/A007362*
Hermite polynomials, <a NAME="Hermite">sequences related to (start):</a>
Hermite polynomials, A060821*
Hermite polynomials, diagonals, A001816
Hermite polynomials, discriminant, A054374
Hermite polynomials, inverse coefficients, A001814, A047974, A067147*
Hermite polynomials, resultants, A054373
Hermite polynomials, row sums: A000898, A062267*
Hermite polynomials, unitary, A066325*
Hermite polynomials: see also A000321, A025165
Hermite polynomials| <a NAME="Hermite_end">sequences related to (start):</a>
Hertzsprung's problem: A002464*
hex numbers: A003215*, A006062, A006244, A006051
hexaflexagons, <a NAME="hexaflexagons">sequences related to (start):</a>
hexaflexagons: A000207*, A007282*, A007499, A057162, A001683*, A000108, A112385
hexaflexagons| <a NAME="hexaflexagons_end">sequences related to (start):</a>
hexaflexagrams: see hexaflexagons
hexagonal , <a NAME="hexagonal">sequences related to (start):</a>
hexagonal close packing: see <a href="Sindx_Ha.html#hcp">h.c.p</a>
hexagonal lattice: see <a href="Sindx_Aa.html#A2">A2 lattice</a>
hexagonal numbers: A000384*, A003215* (centered)
Hexagonal prism:: A005914, A005915
hexagonal pyramidal numbers: A002412
hexagonal| <a NAME="hexagonal_end">sequences related to (start):</a>
Hexanacci numbers:: A001592, A000383
hierarchies, <a NAME="hierarchies">sequences related to (start):</a>
hierarchies: A075729*, A000670, A075744, A075900, A075756, A000629, A075792
hierarchies: see also orders
hierarchies| <a NAME="hierarchies_end">sequences related to (start):</a>
highest common factor (hcf) is written as <a href="Sindx_Ga.html#gcd">GCD</a> (greatest common divisor) in the OEIS
highly abundant numbers: A002093*
highly composite numbers: A002182*, A002473*
highly composite numbers: see also A000705, A002201, A002498, A002497, A002037
highly powerful numbers, see also <a href="Sindx_Pow.html#powerful">powerful numbers</a>
highly powerful numbers: A005934*
Hilbert series: see <a href="Sindx_Mo.html#Molien">Molien series</a>
Hindi: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Ho DIVIDER
Hofstadter , <a NAME="Hofstadter">sequences related to (start):</a>
Hofstadter Q-sequence: A005185
Hofstadter-Conway $10,000 challenge sequence: A004001*
Hofstadter-type sequences: (1) A002024 A004001 A005185 A005206 A005228 A005374 A005375 A005376 A005378 A005379 A046699 A055748
Hofstadter-type sequences: (2) A006949 A070864 A070867 A070868
Hofstadter-type sequences: see also entry for <a href="Sindx_Go.html#GEB">Goedel, Escher, Bach</a>
Hofstadter-type sequences: see also entry for <a href="Sindx_Se.html#sdian">sequence and first differences include all numbers, etc.</a>
Hofstadter|, <a NAME="Hofstadter_end">sequences related to (start):</a>
Hoggatt sequences:: A005362, A005363, A005364, A005365, A005366
holes, <a NAME="holes">sequences related to (start):</a>
holes:: A000104, A006986, A005882, A005873, A004024, A005927, A005883, A005886, A005872, A005887, A001419, A005878, A005879, A004017, A004034
holes| <a NAME="holes_end">sequences related to (start):</a>
home primes: see <a href="Sindx_Pri.html#primes">primes, home</a>
honeycomb, <a NAME="honeycomb">sequences related to (start):</a>
honeycomb:: A006743, A006774, A007214, A003204, A002910, A001668, A006851, A002978, A003199, A005396, A007206, A002912, A003200
honeycomb| <a NAME="honeycomb_end">sequences related to (start):</a>
humble numbers: A002473
Hungarian cube: see <a href="Sindx_Ru.html#Rubik">Rubik cube</a>
Hungarian: A007292
Hungarian: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Hurwitz numbers: A002306/A047817
Hurwitz-Radon numbers, <a NAME="Hurwitz_Radon">sequences related to (start):</a>
Hurwitz-Radon numbers: A003484*, A003485, A053381
Hurwitz-Radon numbers| <a NAME="Hurwitz_Radon_end">sequences related to (start):</a>
hydrocarbons , <a NAME="hydrocarbons">sequences related to (start):</a>
hydrocarbons : A000602*, A002986
hydrocarbons, bicentered: A000200*
hydrocarbons, centered: A000022*
hydrocarbons|, <a NAME="hydrocarbons_end">sequences related to (start):</a>
hyperbinomial transform: A088956
hyperfactorials: A002109*
hypergraphs, uniform: A000665, A051240, A092337
hyperperfect numbers: A007592*, A007593, A007594, A034897*
hyperplane arrangements: A005840
Hypertournaments:: A006250, A006249
hypothenusal numbers: A001660*
hypotheses, n-dimensional: A005465
hypotheses: A005465
Ia DIVIDER
icosahedron, <a NAME="icosahedron">sequences related to (start):</a>
icosahedron, icosahedral numbers: A006564*, A005902
icosahedron: A005901, A006564*, A005902
icosahedron: see also A030136 A030138 A030517 A030518 A054472 A054884 A054885 A064521 A066404 A071398 A071402
icosahedron| <a NAME="icosahedron_end">sequences related to (start):</a>
idempotents: A007185, A016090
idoneal numbers: see <a href="Sindx_Eu.html#idoneal">Index entries for sequences related to Euler's idoneal numbers</a>
If n appears 2n doesn't, etc.:: A007417, A005658, A003159*, A002977, A005660, A005659, A007319, A005662, A005661
ifactor (Maple): A035306
ifactors (Maple): A035306
Imaginary parts:: A006496
imaginary quadratic fields, see <a href="Sindx_Qua.html#quadfield">quadratic fields, imaginary</a>
Impedances:: A003129, A003128, A003130
Impossible values:: A005114
impractical numbers: A007621*
In DIVIDER
Incidence matrices:: A002725, A002728
increasing blocks of digits:  <a NAME="incbloc">sequences related to (start):</a>
increasing blocks of digits: A001114, A001369, A098967.
increasing blocks of digits: see also <a href="Sindx_Sk.html#slic">slowest increasing sequences</a>
increasing blocks of digits|  <a NAME="incbloc_end">sequences related to (start):</a>
Indefinitely growing:: A006745
Independence number:: A006946
Independent sets:: A007380, A007388, A007387, A007386, A007385, A007384, A007391, A007383, A007382, A007390, A007392, A007393, A007394
Infinitary perfect:: A007358, A007357
infinitesimal generators: A005119
initial digits , <a NAME="initial">sequences related to initial digits of numbers (start):</a>
initial digits: (1) A000030 A002993 A002994 A008963 A038546 A045509 A045510 A045511 A045516 A045517 A045518 A045519
initial digits: (2) A045520 A045521 A045522 A045523 A045524 A045525 A045526 A045527 A045528 A045725 A045726 A045727
initial digits: (3) A045728 A045729 A045730 A045731 A045732 A045733 A045784 A045785 A045786 A045787 A045788 A045789
initial digits: (4) A045791 A045792 A045793 A045855 A045856 A045857 A045858 A045859 A045860 A045861 A045862 A045863
initial digits: (5) A047658 A057563
initial digits|, <a NAME="initial_end">sequences related to initial digits of numbers (start):</a>
integers, Gaussian, see <a href="Sindx_Ga.html#gaussians">Gaussian integers</a>
integers: A000027*
integral points:: A002789, A002579, A002578
integral, <a NAME="integral">sequences related to "integral" (start):</a>
Integral: the style used for integrals in the OEIS is illustrated by: Integral_{ x = 2..infinity } 1/log(x) dx or Integral_{ x = 2..infinity } 1/log(x).
integral: the style used for integrals in the OEIS is illustrated by: Integral_{ x = 2..infinity } 1/log(x) dx or Integral_{ x = 2..infinity } 1/log(x).
Integrals:: A001757, A001193, A001194, A001756
Integrate: the style used for integrals in the OEIS is illustrated by: Integral_{ x = 2..infinity } 1/log(x) dx or Integral_{ x = 2..infinity } 1/log(x).
integrate: the style used for integrals in the OEIS is illustrated by: Integral_{ x = 2..infinity } 1/log(x) dx or Integral_{ x = 2..infinity } 1/log(x).
integrate| <a NAME="integral_end">sequences related to "integral" (start):</a>
interprimes: A024675
interprimes: see also A072568, A072569
intersections of diagonals: see <a href="Sindx_Pol.html#Poonen">Poonen-Rubinstein paper</a>
interval graphs  , <a NAME="interval">sequences related to (start):</a>
interval graphs: A005215, A005216, A005217, A005218, A005219, A005973, A005974, A005975, A005976, A005977, A005978, A007122, A007123
interval graphs| , <a NAME="interval_end">sequences related to (start):</a>
interval orders: A000763, A005410, A049463, A022493
interval schemes: A005213
intervals, relations between: A055203*
Invariants:: A007478, A002956, A000807, A007293, A007043
INVERT transform, <a NAME="INVERT">sequences related to (start):</a>
INVERT transform: (1) A000107 A002426 A007564 A007971 A023359 A030017 A030018 A030238 A033453 A049037 A051529 A051573
INVERT transform: (2) A055372 A055373 A055374 A055887 A055888 A057547
INVERT transform: see <a href="transforms.txt">Transforms</a> file
INVERT transform| <a NAME="INVERT_end">sequences related to (start):</a>
Irish Gaelic: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Irish: A001368
irreducible polynomials: A001037*
irreducible polynomials: see also <a href="Sindx_Tri.html#trinomial">trinomials over GF(2)</a>
irreducible representations, degrees of: see <a href="Sindx_De.html#DEGIRREP">degrees of irreducible representations</a>
irregular primes: A000928
isogons: A007219
isthmuses: A006398, A006399
Italian: A026858
Italian: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Iterated exponentials:: A000154, A000258, A000307, A000310, A000357, A000359, A000405, A000406, A001669, A001765
Iterates of number-theoretic functions:: A002217, A005424, A003271
i^i: A049007*, A0049006*, A006228
J DIVIDER
J-function: A000521*, A007240, A014708
J2 simple group: A003905, A005813
Jack Benny: A056064
Jacobi elliptic function sn: A004005, A060628
Jacobi nome,  <a NAME="nome">sequences related to (start):</a>
Jacobi nome: A005797, A002639/A119349, A002103
Jacobi nome: see also (1) A000700 A001936 A004011 A005798 A007247 A007248 A007267 A014969 A029839 A029845 A078791 A081360
Jacobi nome: see also (2) A083365 A107035 A113184 A115977 A124863 A124972 A132136 A134746 A134747 A139820
Jacobi nome|  <a NAME="nome_end">sequences related to (start):</a>
Jacobi symbol: A034947 = (-1,n)
Jacobi symbol: see also A005825 A005826 A005827 A077008 A077009 A077010
Jacobi theta series: theta_2(q): A098108, theta_3(q): A000122, theta_4(q): A002448
Jacobi triple product identity: A000122*
Jacobsthal sequence: A001045*
Jacobsthal-Lucas numbers: A014551*
Japanese: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
jeep problem: see A025547, A025550, A075135
join points around circle: see <a href="Sindx_Pol.html#Poonen">Poonen-Rubinstein paper</a>
joke numbers: A006753
Jordan algebras: A001776
Jordan-P\'{o}lya numbers:: A001013
Josephus problem: (1) A000960 A005427 A005428 A006165 A006257* A007495 A032434 A032435 A032436 A054995 A056526 A056530
Josephus problem: (2) A056531 A066997 A082125 A083286 A083287 A088442 A088443 A088452 A088333
Josephus's sieve: see <a href="Sindx_Si.html#sieve">sieve, Flavius Josephus</a>
Joyce, James, "Ulysses": A054382
juggler sequence, <a NAME="juggler_sequence">sequences related to (start):</a>
juggler sequence: A094683 A094685
juggler sequence: see also A007320 A007321 A094684 A094693 A094696 A094697 A094697 A094708 A094716 A094725 A094778
juggler sequence| <a NAME="juggler_sequence_end">sequences related to (start):</a>
juggling,  <a NAME="Juggling">sequences related to (start):</a>
juggling, other related sequences: A006694, A047996, A065167, A065171, A065174, A071160, A060495, A060498.
juggling, site swaps, infinite sequences of, 3 balls: A084501*, A084511, A084521, A084452, A084458, A010701, A010694.
juggling, site swaps, number of: A065177*, A084509, A084519, A084529
juggling|  <a NAME="Juggling_end">sequences related to (start):</a>
jumping champions, jumping problem, <a NAME="jumping_problem">sequences related to (start):</a>
jumping champions: A087102 A087103 A087104
jumping problem: A002466 A019592 A019593 A019595 A019596 A019993 A019994 A019995 A019996 A019997 A019998 A052709
jumping problem|, <a NAME="jumping_problem_end">sequences related to (start):</a>
junction numbers: A006064
Justified arrays:: A007073, A007074, A007072
K DIVIDER
k-arcs: A005524
K-free sequences:: A003002, A003003, A003004, A003005
K12 lattice , <a NAME="K12">sequences related to (start):</a>
K12 lattice, <a href="http://www.research.att.com/~njas/lattices/K12.html">home page for</a>
K12 lattice, theta series of: A004010*
K12 lattice|, <a NAME="K12_end">sequences related to (start):</a>
Kagome' lattice: A001665, A005397
Kappa_{12} lattice: see <a href="Sindx_K.html#K12">K12 lattice</a>
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order), <a NAME="Kaprekar_map">sequences related to (start):</a>
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 1) A151949*, A099009*, A099010, A069746, A090429, A132155, A151946, A151947, A151950, A056965,
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 2) A151951, A151955, A151956, A151957, A151958, A151959*, A151962, A151963, A151964, A151965, A151966
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 3) A151967, A151968
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 4) A164715, A164716, A164717, A164718, A164719, A164720, A164721, A164723, A164724, A164725, A164726, A164727
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 5) A164728, A164729, A164730, A164731, A164732, A164733, A164734, A164735, A164736
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 6) [base 2] A160761, A163205, A164884, A164885, A164886, A164887
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 7) [base 3] A164993-A165011
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 8) [base 4] A165012-A165031
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 9) [base 5] A165032-A165050
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (10) [base 6] A165051-A165070
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (11) [base 7] A165071-A165089
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (12) [base 8] A165090-A165109
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (13) [base 9] A165110-A165129
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (14) [Joseph Myers's program for sequences related to] See A151949
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): see also <a href="Sindx_Ra.html#RADD">RADD sequences</a>
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): see also <a href="Sindx_Ra.html#RATS">RATS sequences</a>
Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): see also <a href="Sindx_Res.html#RAA">Reverse and Add! sequences</a>
Kaprekar numbers: A006886*, A037042, A053394, A053395, A053396, A053397, A045913, A006887
Kaprekar| map n -> (n with digits in decreasing order) - (n with digits in ascending order), <a NAME="Kaprekar_map_end">sequences related to (start):</a>
Kayles: A002186*
Keith numbers , <a NAME="Keith">sequences related to (start):</a>
Keith numbers: A007629*, A06576*
Keith numbers|, <a NAME="Keith_end">sequences related to (start):</a>
Kempner tableaux: A005437, A005438
Kempner-Smarandache numbers, <a NAME="Kempner">sequences related to (start):</a>
Kempner-Smarandache numbers: A002034*, A007672
Kempner-Smarandache numbers: see also A011772
Kempner-Smarandache numbers| <a NAME="Kempner_end">sequences related to (start):</a>
Kendall-Mann numbers: A000140*
Kepler's tree of fractions: A020651/A086592, A093873/A093875
keys: A002714
Khintchine's constant: A002210* (decimal expansion), A002211* (continued fraction)
Kimberling puzzle: A006852, A035486
kings problem: A002464*, A002493
kissing numbers, <a NAME="kissing">sequences related to (start):</a>
kissing numbers: A001116* (all lattices), A002336 (laminated lattices), A028923 (Kappa_n), A006088 (Barnes-Wall lattices), A034597 (extremal lattice in 24n dimensions), A034598 (second nonzero coefficient)
kissing numbers| <a NAME="kissing_end">sequences related to (start):</a>
Klarner-Rado sequences, <a NAME="KLARNER">sequences related to (start):</a>
Klarner-Rado sequences: see A005658 and references given there
Klarner-Rado sequences| <a NAME="KLARNER_end">sequences related to (start):</a>
knights , <a NAME="knights">sequences related to (start):</a>
knights tours: A001230
knights, covering board with: A006075, A006076, A098604
knights, non-attacking: A030978*
knights, see also (1): A003192 A005220 A005221 A005222 A005223 A018836 A018837 A018838 A018839 A018840 A018841
knights, see also (2): A018842 A025588 A025589 A025590 A025599 A025600 A025601 A025602 A030444 A030445 A030446 A030447
knights, see also (3): A030448 A035289 A037009 A047878 A047879 A047881 A047883 A049604
knights|, <a NAME="knights_end">sequences related to (start):</a>
Knopfmacher expansions: A007567, A007568, A007759
knots : A002864*, A002863*, A018891*
knots, <a NAME="knots">sequences related to (start):</a>
knots, in a strip of paper: A049013*
knots: see also A007478, A007293
knots| <a NAME="knots_end">sequences related to (start):</a>
Knuth , <a NAME="Knuth">sequences related to (start):</a>
Knuth's Fibonacci or circle product: A101330, A135090
Knuth's sequence (or Knuth numbers): A007448*, A002977
Knuth|, <a NAME="Knuth_end">sequences related to (start):</a>
Kobon triangles: A006066, A032765
Kolakoski sequence, <a NAME="Kolakoski">sequences related to (start):</a>
Kolakoski sequence: A000002*
Kolakoski sequence: see also (1) A001083 A006928 A013947 A013948 A022292 A022294 A022295 A022296 A022327 A025503 A025504 A042942
Kolakoski sequence: see also (2) A049705 A078880 A064353
Kolakowski sequence: see <a href="Sindx_K.html#Kolakoski">Kolakoski sequence</a>
Kolakowski| sequence, <a NAME="Kolakoski_end">sequences related to (start):</a>
Kotzig factorizations:: A005702
Kronecker (-1,n): A034947
Kubelski sequence: A056064
Kummer's conjecture, <a NAME="Kummer">sequences related to (start):</a>
Kummer's conjecture: A000921, A000922, A000923
Kummer's conjecture| <a NAME="Kummer_end">sequences related to (start):</a>
K_12 lattice: see <a href="Sindx_K.html#K12">K12 lattice</a>
K_{12} lattice: see <a href="Sindx_K.html#K12">K12 lattice</a>
La DIVIDER
L-series: A007653, A046113
L.C.M.: see entries under <a href="Sindx_Lc.html#lcm">LCM</a>
labeled partitions: see also under <a href="Sindx_Par.html#part">partitions</a>
lacing a shoe , <a NAME="lacings">sequences related to (start):</a>
lacing a shoe: A078601 A078629 A078674 A078602 A078675 A078676 A078698 A078700 A078702 A079410 A072503 A002866
lacing a shoe: see also A002816 A078603 A078628 A078673
lacing a shoe|, <a NAME="lacings_end">sequences related to (start):</a>
Laguerre polynomials, <a NAME="Laguerre">sequences related to (start):</a>
Laguerre polynomials, A021009*, A021010, A021012
Laguerre polynomials, columns: A001805-A001807, A001809-A001812
Laguerre polynomials, generalized, columns: A061206 A062141-A062144, A062148-A062152, A062193-A062195, A062199, A062260-A062263
Laguerre polynomials, generalized, row sums: A062146, A062147, A062191, A062192, A062197, A062198, A062265, A062266, A066668
Laguerre polynomials, generalized: A062137-A062140, A066667
Laguerre polynomials, row sums: A009940*
Laguerre polynomials: see also A025166
Laguerre polynomials| <a NAME="Laguerre_end">sequences related to (start):</a>
Lah numbers, <a NAME="Lah">sequences related to (start):</a>
Lah numbers, triangle of: A008297*
Lah numbers: A001286, A001754, A001755, A001777, A001778
Lah numbers: see also (1) A000262 A035342 A035342 A035469 A035469 A046089 A048897 A049029 A049029 A049352 A049353 A049374
Lah numbers: see also (2) A049385 A049385 A049403 A049404 A049410 A049411 A049424
Lah numbers| <a NAME="Lah_end">sequences related to (start):</a>
LambertW function, <a NAME="LambertW">sequences related to (start):</a>
LambertW function: A001662, A051711, A058955, A058956, A013703, A030178, A030179, A052807, A052880, A005172, A030797
LambertW function| <a NAME="LambertW_end">sequences related to (start):</a>
laminated lattices, <a NAME="laminated">sequences related to (start):</a>
laminated lattices, determinants of: A028921*
laminated lattices, kissing numbers of: A002336*, A028924*
laminated lattices, numbers of: A005135*
laminated lattices, theta series of (1): A000122 A004016 A004015 A004011 A005930 A004007 A004008 A004009 A005933 A006909 A006910 A006911 A006912 A006913
laminated lattices, theta series of (2): A006914 A006915 A006916 A006917 A023937 A023938 A023939 A023940 A023941 A023942 A023943 A023944 A023945 A024211
laminated lattices| <a NAME="laminated_end">sequences related to (start):</a>
Landau approximation: A000690
Landau's function g(n): A000793*
Langford-Skolem problem of arranging 11223344...nn: A014552, A050998, A059106, A059107, A059108
language, words in a certain: A000802 A005819 A007055 A007056 A007057 A007058 A036995
largest factors , <a NAME="largest_factors">sequences related to (start):</a>
largest factors of various numbers: (1) A002582 A002583 A002584 A002585 A002587 A002588 A002590 A002591 A002592 A003020 A003021 A005420
largest factors of various numbers: (2) A005422 A006486 A007571 [this list needs to be extended]
largest factors| <a NAME="largest_factors_end">sequences related to (start):</a>
largest prime dividing n: A006530*, A070087, A070089
last digits: see <a href="Sindx_Fi.html#final">final digits</a>
last occurrence: A001463
Latin (the language): A132984
Latin (the language): see also A132204
Latin cubes, rectangles and squares, <a NAME="Latin">sequences related to (start):</a>
Latin cubes: A098843 A098846 A098679 A099321
Latin rectangles: A000186 A000512 A000513 A000516 A000536 A000573 A000576 A001009 A001568 A001623 A001624 A001625 A001626 A001627 A003170
Latin squares, mutually orthogonal: A001438*
Latin squares, number of: A000315* (reduced), A002860*, A003090*, A040082*, A003191
Latin squares, see also A000519, A000611, A001070, A019570, A019585
Latin squares, see also Latin rectangles
Latin squares: see also Latin rectangles, <a href="Sindx_Qua.html#quasigroups">quasigroups</a>
Latin squares| <a NAME="Latin_end">sequences related to (start):</a>
Latin: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
lattice   , sequences related to <a NAME="Lattices">(start):</a>
lattice : in this index only, lattice (small l) refers to arrangements of points in space, Lattice (capital L) refers to partially ordered sets
lattice points in various regions:: A000036, A000092, A000099, A000223, A000323, A000328, A000413, A000605
lattice, extremal in dimension 72: A004675*
lattices : in this index only, lattice (small l) refers to arrangements of points in space, Lattice (capital L) refers to partially ordered sets
lattices, by determinant: A005134, A005138, A005139, A005140, A054907, A054908, A054909, A054911
Lattices, distributive:: A006982, A006356, A006357, A006358, A006359, A006360, A006361, A006363, A006362
lattices, eutactic: A037075, A065536
Lattices, examples of ("meet" and "join" paired): A004198-A003986, A003989-A003990, A082858-A082860
lattices, extreme: A033689*
lattices, Green's function for:: A003301, A003283, A003299, A003282, A003302, A003280, A003284, A003300, A003298, A003281
Lattices, labeled: A055512*, A058164, A058165, A058803-A058805
lattices, laminated: A005135*
lattices, laminated: see also under <a href="Sindx_La.html#laminated">laminated lattices</a>
lattices, minimal determinant of:: A005102, A005103, A005104
lattices, minimal norm of: see <a href="Sindx_Me.html#minimal_norm">minimal norm</a>
Lattices, modular: A006981*
lattices, orthogonal: A007669
lattices, paths on:: A006191, A006318, A006189, A006192, A006319, A006320, A006321
lattices, perfect: A004026*, A065535
lattices, polygons on:: A002931, A006781, A006782, A006772, A006783, A006773
lattices, polymers on:: A007290, A007291
lattices, see also under: <a href="Sindx_Su.html#sublatts">sublattices</a>
lattices, spin-wave coefficients: A003303
lattices, unimodular and even: A054909*
lattices, unimodular and odd: A054911*, A054908
lattices, unimodular, minimal norm of: A005136*
lattices, unimodular: A005134*, A054907
Lattices, vertically indecomposable: A058800*, A058801, A058802, A058803*, A058804, A058805
lattices, walks on:: see <a href="Sindx_Wa.html#WALKS">walks</a>
Lattices: A006966* (unlabeled); A055512* (labeled)
lattices: see also under <a href="Sindx_Lu.html#L_infinity">L_infinity norms</a>
Lattices: see also under <a href="Sindx_Pos.html#posets">posets</a>
lattices: see also under individual names: <a href="Sindx_Aa.html#A2">A2 lattice</a>, <a href="Sindx_Ba.html#bcc">b.c.c. lattice</a>, <a href="Sindx_Ba.html#BW">Barnes-Wall lattices</a>, <a href="Sindx_Fa.html#fcc">f.c.c. lattice</a>,  <a href="Sindx_Ha.html#hcp">hexagonal close-packing</a>, etc.
lattice|   , sequences related to <a NAME="Lattices_end">(start):</a>
Lazy Caterer sequence: A000124*
Lc DIVIDER
LCM , <a NAME="lcm">sequences related to (start):</a>
LCM of binomial coefficients: A002944
LCM(x,y): A003990*, A051173*, A000793*, A003418*, A048691*
LCM: see also A002944, A007463, A006580, A051426, A051193, A048619, A048671, A045948, A025557, A025556, A025527, A025558, A034890, A035105, A049073
LCM: the canonical spelling for "least common divisor" in the OEIS is LCM (not lcm) (except of course in Maple and PARI lines)
lcm: the canonical spelling for "least common divisor" in the OEIS is LCM (not lcm) (except of course in Maple and PARI lines)
LCM{1,2,...,n}: A003418*, A002944
LCM{1,3,5,...,2n+1}: A025547*
LCM|, <a NAME="lcm_end">sequences related to (start):</a>
least common multiple: see entries under <a href="Sindx_Lc.html#lcm">LCM</a>
least k such that the remainder when X^k is divided by k is n where X = 2..32  , <a NAME="tiny5">sequences related to (start):</a>
least k such that the remainder when X^k is divided by k is n where X = 2..32 (01): A036236,  A078457,  A119678,  A119679,  A127816,  A119715,  A119714,  A127817, A127818,  A127819, A127820,  A127821,
least k such that the remainder when X^k is divided by k is n where X = 2..32 (02): A128154,  A128155,  A128156,  A128157,  A128158,  A128159, A128160,  A128361, A128362,  A128363,  A128364,  A128365,
least k such that the remainder when X^k is divided by k is n where X = 2..32 (03): A128366,  A128367,  A128368,  A128369, A128370,  A128371, A128372,
least k such that the remainder when X^k is divided by k is n where X = 2..32 (04): see also: A126762
least k such that the remainder when X^k is divided by k is n where| X = 2..32, <a NAME="tiny5_end">sequences related to (start):</a>
Least number of powers to represent n:: A002828, A002377, A151925
least significant bit (lsb): A000035
Leech  , <a NAME="Leech">sequences related to (start):</a>
Leech lattice, odd: A027859*
Leech lattice, shorter: A004537*, A029754*
Leech lattice, theta series of: A008408*
Leech lattice: see also A001942, A004034, A029754
Leech triangle: A001293*
Leech's path-labeling problem: A034470*
Leech's path-labeling problem: see also <a href="Sindx_Go.html#Golomb">Golomb rulers</a>
Leech's tree-labeling problem: A007187*
Leech| <a NAME="Leech_end">sequences related to (start):</a>
left factorials: A003422*
left factorials: see also <a href="Sindx_Fa.html#factorial">factorial numbers</a>
Legendre , <a NAME="Legendre">sequences related to (start):</a>
Legendre polynomials:: A008316*, A001797, A001798, A001801, A002461, A001796, A001800, A002463, A001802, A001795, A001799, A006750, A002462
Legendre's conjecture: A007491, A014085, A053000, A053001
Legendre|, <a NAME="Legendre_end">sequences related to (start):</a>
LEGO blocks, <a NAME="LEGO">sequences related to (start):</a>
LEGO blocks: A007575, A007576
LEGO blocks| <a NAME="LEGO_end">sequences related to (start):</a>
Lehmer's constant: A002665*, A030125*, A002794*/A002795*, A002065
Lehmer's polynomial: A070178
Leibniz's triangle: see <a href="Sindx_Ha.html#harmonic">harmonic triangle of Leibniz</a>
lemniscate function, or Weierstrass P-function: A002306*/A047817*, A002770
Lemoine's conjecture: A046927
length of n in binary: A070939
Length of runs:: A000002, A001250, A001251, A001252, A001253, A000303, A000402, A000434, A000456, A000467, A000517
Leonardo logarithms: A001179
Les Marvin sequence: A007502
letters in n  , <a NAME="letters">sequences related to (start):</a>
letters in n (in English): A005589*, A006944
letters in n (in other languages) (1): A001050 (Finnish), A001368 (Irish Gaelic), A003078 (Danish), A006968 or A092196 (Roman numerals), A007005 or A006969 (French), A006994 (Russian), A007208 (German), A007292 (Hungarian), A007485 or A090589 (Dutch),
letters in n (in other languages) (2): A008962 (Polish), A010038 (Czech), A011762 (Spanish), A027684 (Hebrew, dotted), A051785 (Catalan), A026858 (Italian), A056597 (Serbian or Croatian), A057435 (Turkish), A132984 (Latin), A140395 (Hindi),
letters in n (in other languages) (3): A053306 (Galego), A057696 (Brazilian Portuguese), A057853 (Esperanto), A059124 (Swedish), A030166, A112348, A112349 and A112350 (Chinese), A030166 (Japanese Kanji), A140396 (Welsh), A140438 (Tamil)
letters in n (in other languages) (4): A014656 (Bokmal), A028292 (Nynorsk)
letters in n| , <a NAME="letters_end">sequences related to (start):</a>
Levenshtein distance (1); A010097, A080910, A080950, A081230, A081355, A081356, A081732, A083311, A083381, A091090,
Levenshtein distance (2); A091091, A091092, A091093, A091110, A091111, A097720, A097721, A097722, A106028, A106432,
Levenshtein distance (3); A109378, A109380, A109382, A109809, A109811, A115777, A115778, A115779, A115780, A118757, A118763
Levine's sequence: A011784*
Levy's conjecture: A046927
Li DIVIDER
Li(n): A047783, A047784, A047785
Lie algebras , <a NAME="Lie">sequences related to (start):</a>
Lie algebras, dimensions of: A001066*, A003038*, A038539*
Lie algebras, filiform: A055614
Lie algebras, see also (1): A005018 A005233 A005423 A005433 A005453 A005454 A005455 A005456 A005457 A005458 A005459
Lie algebras, see also (2): A005496 A005555 A007851 A007988 A007990 A007991 A007993 A007994 A007995 A028351 A030647
Lie algebras, see also (3): A030648 A030649 A030650
Lie algebras|, <a NAME="Lie_end">sequences related to (start):</a>
light, speed of: A003678*
light-bulb game of Berlekamp: A005311
light-bulbs: see also A046932, A055061
linear codes: see also <a href="Sindx_Coa.html#codes_binary_linear">codes, binary</a>
linear extensions, <a NAME="linear_extensions">sequences related to (start):</a>
linear extensions: A114717, A114714, A114715, A114716, A000111, A046873, A060854, A039622.
linear extensions| <a NAME="linear_extensions_end">sequences related to (start):</a>
linear forms: A004059, A057561
linear inequalities: A002797
linear orders: A006455*
linear recurrences with constant coefficients: see <a href="Sindx_Rea.html#recLCC">recurrence, linear, constant coefficients</a>
linear spaces, <a NAME="linear_spaces">sequences related to (start):</a>
linear spaces: A056642, A001199, A002877, A002876, A001548
linear spaces| <a NAME="linear_spaces_end">sequences related to (start):</a>
lines, number of ways of arranging: A048872*, A048873*, A003036*
lines, ordinary: A003034
Linus sequence: A006345
Liouville , <a NAME="Liouville">sequences related to (start):</a>
Liouville's constant: A012245
Liouville's function L(n): A002819*, A002053
Liouville's function lambda(n): A008836*, A056912, A056913, A026424, A028260
Liouville's function: see also A007421
Liouville's number: A012245
Liouville|, <a NAME="Liouville_end">sequences related to (start):</a>
list manipulation functions of Lisp and similar programming languages, sequences induced by <a NAME="ListFunsOfLisp">(start):</a> (These act on symbolless S-expressions encoded by A014486/A063171, usually giving as their result an index therein.)
list manipulation functions of Lisp, append, A085201
list manipulation functions of Lisp, car, A072771
list manipulation functions of Lisp, cdr, A072772
list manipulation functions of Lisp, cons, A072764
list manipulation functions of Lisp, length, A057515
list manipulation functions of Lisp, list, 1-ary, A057548
list manipulation functions of Lisp, list, 2-ary, A085205
list manipulation functions of Lisp, reverse, A057508, A033538
list manipulation functions of Lisp: see also <A HREF="Sindx_Ro.html#RootedTreePlanEncodings">rooted trees, plane, encodings of</a> and <A HREF="Sindx_Per.html#IntegerPermutationCatAuto">signature-permutations induced by Catalan automorphisms</A>.
list manipulation functions of Lisp| and similar programming languages, sequences induced by <a NAME="ListFunsOfLisp_end">(start):</a> (These act on symbolless S-expressions encoded by A014486/A063171, usually giving as their result an index therein.)
list merging, sorting by: A003071
lists of sets: A002869
lists: see also under <a href="Sindx_Par.html#part">partitions</a>
ln: see <a href="Sindx_Lo.html#LOG">log</a>
Lo DIVIDER
locks: A002050*
Loeschian numbers: A003136*
log , <a NAME="LOG">sequences related to logarithms (start):</a>
log 10, decimal expansion of: A002392*
log 2, decimal expansion of: A002162*
log 3, decimal expansion of: A002391*
log 5, decimal expansion of: A016628*
log 7, decimal expansion of: A016630*
log(3/2): A016529, A016578
log(cos(x)): A046990/A046991
log(n)*2^n/n: A065613, A065614, A065616, A065617, A065618
log(n): A000195*, A000193*, A004233*
log(sin(x)/x): A046988/A046989
log(sin(x)/x)| , <a NAME="LOG_end">sequences related to logarithms (start):</a>
logarithmic integral: see Li(n)
logarithmic numbers, <a NAME="logarithmic">sequences related to (start):</a>
logarithmic numbers: (1) A000522 A002104 A002206 A002207 A002741 A002742 A002743 A002744 A002745 A002746 A002747 A002748
logarithmic numbers: (2) A002749 A002750 A002751 A007553
logarithmic numbers| <a NAME="logarithmic_end">sequences related to (start):</a>
log_10 e, decimal expansion of: A002285*
log_2 3: continued fraction for, A028507, A005663, A005664; decimal expansion, A020857
log_2(n): A000523, A004257, A029837, A020857-A020864, A152590
log_3(n): A102524, A100831, A113209, A102525, A152565, A113210, A152566, A152549, A152564
long but finite sequences: see <a href="Sindx_Fi.html#FINITEBUTLONG">finite sequences with a large number of terms</a>
longest common subsequence: A094837, A094838, A094858, A094859, A094863, A094860, A094861, A094862, A094863, A094291
longest common subsequence: see also A094291, A007581, A027433, A047874, A124092
longest common subsequence: see also longest common substring
longest common substring: A094824
longest common substring: see also A177062
longest common substring: see also longest common subsequence
look and say sequences: A005150, A045918; but see entries under <a href="Sindx_Sa.html#swys">"say what you see"</a>
loops, <a NAME="loops">sequences related to (start):</a>
loops, in digits: A001729, A001742, A034905
loops, in hypercubes: A043546
loops, Moufang: A000373
loops: A000644, A007746
loops| <a NAME="loops_end">sequences related to (start):</a>
Lorentzian modular group: A005793, A005794
Losanitsch's triangle: A034851*, A034852, A034877, A034872, A032123
low discrepancy sequences: A005356, A005357, A005358, A005377
low temperature series  , <a NAME="low_temperature_series">sequences related to (start):</a>
low temperature series (1): A002890 A002891 A002909 A002915 A002926 A002927 A007214 A007215 A007216 A007217 A007218 A007270
low temperature series (2): A007271 A029872 A029873 A029874 A030045 A030046 A030047 A047710
low temperature series| <a NAME="low_temperature_series_end">sequences related to (start):</a>
loxodromic sequence of spheres: A027674*
Loxton-van der Poorten sequence: A006288*
Loyd's 15-Puzzle: see <a href="Sindx_Fi.html#Fifteen_Puzzle">Fifteen Puzzle</a>
LS ("Look and Say"): A045918; see also <a href="Sindx_Sa.html#swys">"say what you see"</a>
lsb = least significant bit: A000035
Lu DIVIDER
Lucas , <a NAME="Lucas">sequences related to (start):</a>
Lucas numbers, generalized: A006490, A006491, A006492, A006493
Lucas numbers, generalized: see <a href="Sindx_Fi.html#Fibonacci">Fibonacci numbers, generalized</a>
Lucas numbers, prime: see <a href="Sindx_Pri.html#primes">primes, Lucas numbers</a>
Lucas numbers: A000032*, A000204*
Lucas numbers: see also A003263, A001606, A006490, A005479, A005372, A006491, A005371, A002878, A006492, A004146, A006493, A005970, A005971, A005972, A006972, A005845
Lucas polynomials: A034807*, A061896
Lucas pseudoprimes: see <a href="Sindx_Ps.html#pseudoprimes">pseudoprimes</a>
Lucas, Theorie des Nombres, on the web: see A008288
Lucas-Carmichael numbers: A006972*
Lucasian primes: see <a href="Sindx_Pri.html#primes">primes, Lucasian</a>
Lucas|, <a NAME="Lucas_end">sequences related to (start):</a>
lucky numbers, <a NAME="lucky_numbers">sequences related to (start):</a>
lucky numbers: A000959*
lucky numbers: even: A045954*
lucky numbers: see also A002850
lucky numbers| <a NAME="lucky_numbers_end">sequences related to (start):</a>
Lukasiewicz words , <A NAME="LukasiewiczWords">Lukasiewicz words, sequences related to (start)</A>
Lukasiewicz words: A071152, A071153, A071160
Lukasiewicz words|, <A NAME="LukasiewiczWords_end">Lukasiewicz words, sequences related to (start)</A>
Lyndon words , <a NAME="Lyndon">sequences related to (start):</a>
Lyndon words , A001037*, A001840, A006206, A006918, A011795-A011797, A011845, A031164, A032168, A032169, A032321*, A051170, A051172
Lyndon words, 10-colored, A032165*
Lyndon words, 11-colored, A032166*
Lyndon words, 12-colored, A032167*
Lyndon words, 3-colored, A027376*, A032322*, A046209, A046211
Lyndon words, 4-colored, A027377*, A032323*
Lyndon words, 5-colored, A001692*, A032324*
Lyndon words, 6-colored, A032164*
Lyndon words, 7-colored, A001693*
Lyndon words, balanced (1): A000048, A000150, A000740, A022553*, A029808, A029809, A045632, A050180-A050185
Lyndon words, balanced (2): A074651-A075657
Lyndon words, complements are equivalent, A000048, A000740, A045632
Lyndon words, triangle: A051168*, A052314, A074650
Lyndon words: see also (1): A002730, A032134-A032142, A032144-A032150, A032153-A032159, A032170, A032325-A032332, A045680
Lyndon words: see also (2): A045683-A045687, A051841, A056493, A075147
Lyndon words: see also <a href="Sindx_Br.html#bracelets">bracelets</a>, <a href="Sindx_Ne.html#necklaces">necklaces</a>
Lyndon words|, <a NAME="Lyndon_end">sequences related to (start):</a>
lyrics, see: <a href="Sindx_So.html#songs">songs, popular</a>
L_infinity norms , <a NAME="L_infinity">sequences related to (start):</a>
L_infinity norms in lattices: A010014, A022144, A110907, A117216
L_infinity norms|, <a NAME="L_infinity_end">sequences related to (start):</a>
M DIVIDER
m-sequences , <a NAME="m_sequences">sequences related to (start):</a>
m-sequences, binary, examples of: A011655 A011656 A011657 A011659 A011660 A011661 A011662 A011663 A011664 A011665
m-sequences, binary, more examples: A011666 A011667 A011668 A011669 A011670 A011671 A011673 A011674 A011675 A011676
m-sequences, binary, more examples: A011677 A011678 A011679 A011680 A011681 A011682 A011683 A011684 A011685 A011686
m-sequences, binary, more examples: A011687 A011688 A011689 A011690 A011691 A011692 A011693 A011694 A011695 A011696
m-sequences, binary, more examples: A011697 A011698 A011699 A011700 A011701 A011702 A011703 A011704 A011705 A011706
m-sequences, binary, more examples: A011707 A011708 A011709 A011710 A011711 A011712 A011713 A011714 A011715 A011716
m-sequences, binary, more examples: A011717 A011718 A011719 A011720 A011721 A011722 A011723 A011724 A011725 A011726
m-sequences, binary, more examples: A011727 A011728 A011729 A011730 A011731 A011732 A011733 A011734 A011735 A011736
m-sequences, binary, more examples: A011737 A011738 A011739 A011740 A011741 A011742 A011743 A011744 A011745
m-sequences, enumeration of: A000110 A000125 A003659 A007065 A007625 A007723 A011802 A011803 A011804 A011805
m-sequences, enumeration of; cont.: A011806 A011807 A011808 A011809 A011810 A011811 A011812 A011813 A011814 A011815
m-sequences, enumeration of; cont.: A011816 A011817 A011819 A011819 A011820 A011820 A011821 A011822 A011823 A011824 A011825
M-sequences: see m-sequences
m-sequences|, <a NAME="m_sequences_end">sequences related to (start):</a>
M-trees: A006959*
Mag DIVIDER
magic numbers, <a NAME="magic_numbers">sequences related to (start):</a>
magic numbers: A004210*, A005902*, A018226, A018227, A033547, A046939, A046940
magic series: A052456, A052457, A052458
magic series|, <a NAME="magic_numbers_end">sequences related to (start):</a>
magic squares : <a NAME="magic"> sequences related to (start):</a>
magic squares, 3 X 3: A033812, A024351, A073473, A073519, A073350
magic squares, 4 X 4: A073521, A032530
magic squares, 5 X 5: A073522
magic squares, 6 X 6: A073523
magic squares, antimagic: A050257
magic squares, from primes: A073473, A024351, A073519, A073521, A073522, A073523, A073350, A073502, A073520
magic squares, number of: A006052*
magic squares, panmagic: A027567, A051235
magic squares, row sums: A006003
magic squares, see also: A014582, A033816
magic squares, smallest magic constant: A073502, A073520
magic squares, stochastic matrices: A000681, A005650, A001500
magic squares|: <a NAME="magic_end"> sequences related to (start):</a>
magnetization coefficients, <a NAME="magnetization">sequences related to (start):</a>
magnetization coefficients: (1) A002928 A002929 A002930 A003193 A003196 A007206 A007207 A010102 A010103 A010104 A010105 A010106
magnetization coefficients: (2) A030120 A030121 A057374 A057378 A057382 A057386 A057390 A057394 A057398 A057402
magnetization coefficients| <a NAME="magnetization_end">sequences related to (start):</a>
Mahler's number: see <a href="Sindx_Ch.html#Champernowne">Champernowne constant</a>
Mahonian numbers: A008302*
making change for n cents  , <a NAME="change"> sequences related to (start):</a>
making change for n cents (1): A000008 A001299 A001300 A001301 A001302 A001306 A001310 A001312 A001313 A001314 A001319 A001343
making change for n cents (2): A001362 A001364 A002426 A011542 A053344
making change for n cents| , <a NAME="change_end"> sequences related to (start):</a>
malicious apprentice problem: A057716, A074894*
Mancala , <a NAME="Mancala">sequences related to (start):</a>
Mancala solitaire (generalized): {k=0..12} A002491, A000960 (Flavius Josephus's sieve), A112557, A112558, A113742, A113743, A113744, A113745, A113746, A113747, A113748; det. A113749.
Mancala: see also Tchoukaillon (the main entry is A028932)
Mancala|, <a NAME="Mancala_end">sequences related to (start):</a>
Mandelbrot set:: A006874, A006875, A006876
Mangoldt function: A029832, A029833, A029834, A053821
Manhattan lattice: A006744, A006745, A006781
Manhattan subways: A001049, A011554
manifolds: A005026*
Map DIVIDER
map, 3x+1: see <a href="Sindx_3.html#3x1">3x+1 problem</a>
Maple code for computing positions of 0's in decimal expansion of Pi (say): A014976
mappings , <a NAME="MAPPINGS">sequences related to (start):</a>
mappings, fixed points of, see: <a href="Sindx_Fi.html#FIXEDPOINTS">fixed points of mappings</a>
mappings, labeled: A000312
mappings: see also <a href="Sindx_Map.html#MAPS">maps</a>
mappings| <a NAME="MAPPINGS_end">sequences related to (start):</a>
maps , <a NAME="MAPS">sequences related to (start):</a>
maps on n points: A001372*
Maps, 2-connected, A006445, A005645, A006444, A006403, A006407, A006406, A006405, A006404
Maps, A006399, A006398, A006397, A006396, A006384, A005027, A006391, A006390, A006389, A006388, A006961, A001372*, A003620, A006393, A006392, A006343, A003621, A005945, A005946
Maps, almost trivalent, A002006, A002012, A002005, A002008, A002010, A002007, A002009
maps, coloring: A000934*, A000703
maps, coloring: see also <a href="Sindx_Coi.html#coloring">coloring a map</a>
Maps, connected, A006443, A006385
maps, folding: A001417*
Maps, genus 1, A006387, A006386
Maps, Hamiltonian, A000264, A000356
Maps, nonseparable, A006402
maps, planar: A000184, A000365, A000473, A000502, A006294, A006295, A006384, A006385
maps, planar: see also <a href="Sindx_Ph.html#planar">planar vs plane</a>
maps, plane: see also <a href="Sindx_Ph.html#planar">planar vs plane</a>
Maps, regions in, A006683
maps, rooted (1):: A000087, A006470, A000184, A000257, A000259, A000305, A000309, A006302, A006294, A006468, A006471, A000365, A006419, A006416
maps, rooted (2):: A006469, A006295, A006297, A000473, A006420, A006417, A006298, A006299, A006301, A006421, A006303, A006418, A000502, A006296
Maps, self-dual, A006849
Maps, symmetric, A005028
Maps, toroidal, A006408, A006422, A006425, A006415, A006434, A006439, A006414, A006409, A006436, A006423, A006426, A006441, A006435, A006440, A006300, A006410, A006424, A006427, A006437
Maps, tree-rooted, A004304, A002740, A006411, A006428, A006432, A006412, A006429, A006433, A006413, A006430
Maps, tumbling distance for, A005947, A005948, A005949
maps: see also <a href="Sindx_Map.html#MAPPINGS">mappings</a>
maps: see also under <a href="Sindx_Gra.html#graphs">graphs</a>
maps| <a NAME="MAPS_end">sequences related to (start):</a>
Maris-McGwire numbers: A045759
Markoff numbers: A002559*
Markov numbers: see Markoff numbers
Mat DIVIDER
matchings, <a NAME="matchings">sequences related to (start):</a>
matchings, see also <a href="Sindx_1.html#1_factorizations">1-factorizations</a>
matchings: see also <a href="Sindx_To.html#tournament">tournaments</a>
matchings:: A005154
matchings| <a NAME="matchings_end">sequences related to (start):</a>
mathematical symbols in OEIS: see <a href="Sindx_Sp.html#spell">spelling and notation</a>
matrices,  <a NAME="MATRICES">sequences related to (start):</a>
matrices, (+1,-1): see <a href="Sindx_Mat.html#binmat">matrices, binary</a>
matrices, (0,1): see <a href="Sindx_Mat.html#binmat">matrices, binary</a>
matrices, alternating sign , <a NAME="ASM">sequences related to (start):</a>
matrices, alternating sign: (1) A005130*, A006366*, A003827, A005156, A005158, A005160-A005164, A048601, A050204, A051055, A057629, A059475, A059476, A059486
matrices, alternating sign: (2) A128445, A109074/A134357
matrices, alternating sign: see also <a href="Sindx_Ro.html#Robbins">Robbins numbers</a>
matrices, alternating sign|, <a NAME="ASM_end">sequences related to (start):</a>
matrices, anti-Hadamard: A005312, A005313
matrices, binary , <a NAME="binmat">sequences related to (start):</a>
matrices, binary - refers to matrices with entries of both types, real (or complex) or over a finite field
matrices, binary, 3 X n: A006381, A002727
matrices, binary, 4 X n: A006380, A006382, A006148
matrices, binary, n X n:  complex eigenvalues: A098148
matrices, binary, n X n: A000595* (equivalence classes under S_n), A006383 (equivalence classes under S_n X S_n)
matrices, binary, n X n: det = 1: A086264
matrices, binary, n X n: diagonalizable: A091470, A091471, A091472
matrices, binary, n X n: eigenvalues all = 1 but not positive definite: see A085657
matrices, binary, n X n: invertible: A002884* (over GF(2)), A055165 ({0,1}, rational)
matrices, binary, n X n: maximal determinant: A003432*, A003433*, A013588
matrices, binary, n X n: normal: A055547 A055548 A055549
matrices, binary, n X n: positive definite: A085656 (entries 0,1, rational), A085657 (entries 2,1,0, symmetric), A084552 (entries 2,-1,0, symmetric), A080858
matrices, binary, n X n: positive eigenvalues: A003024 (entries 0,1), A085506 (entries 0, +-1)
matrices, binary, n X n: positive semi-definite: A038379 (entries 0,1, rational), A085658 (entries 2,1,0, symmetric), A084553 (entries 2,-1,0, symmetric), A083029
matrices, binary, n X n: primitive: A070322
matrices, binary, n X n: singular: A000409*, A000410*, A046747* (rational)
matrices, binary, n X n: with k 1's in each row and column: A000142, A001499, A001501, A058528, A075754
matrices, binary, n X n: zero permanent: A088672
matrices, binary, permanents of: A000255 A052655 A087981 A087982 A087983 A088672
matrices, binary, upper triangular: A005321*
matrices, binary, with n 1's: A049311*
matrices, binary, with no 2 adjacent 1's: A006506*
matrices, binary, with no zero rows or columns: A048291, A054976
matrices, binary: see also <a href="Sindx_Ha.html#Hadamard">Hadamard matrices</a>
matrices, binary: see also A002820, A000804, A000805, A003509, A005991, A002724, A005019, A005020
matrices, binary: see also matrices, ternary
matrices, binary|, <a NAME="binmat_end">sequences related to (start):</a>
matrices, conference: A000952*
matrices, cyclic: A000804, A000805
matrices, Hadamard: see <a href="Sindx_Ha.html#Hadamard">Hadamard matrices</a>
Matrices, Hilbert, A005249
Matrices, incidence, A002725, A002728
Matrices, modular, A005045, A006045, A005353
matrices, normal: A055547 A055548 A055549
Matrices, norms of, A004141
Matrices, Pascal, A006135, A006136
Matrices, random, A001171
Matrices, Schur, A003112
Matrices, stochastic, A006847, A006848, A000987, A000985, A001495, A000681, A000986, A001500, A001499, A001496, A001501, A005466, A003438, A005467, A003439
matrices, ternary - refers to matrices with entries of both types, real (or complex) or over a finite field
matrices, ternary, n X n: A053290, A056989
matrices, ternary, see also <a href="Sindx_Mat.html#binmat">matrices, binary</a>
Matrices:: A002136, A005020, A005045, A007411, A006045, A005353, A005019
matrices|  <a NAME="MATRICES_end">sequences related to (start):</a>
matrix, coprime?: A005326*
matroids , <a NAME="matroid">sequences related to (start):</a>
matroids, triangle of number of: A034327, A034328, A058669, A053534, A058710, A058711, A058716, A058717, A058720, A058730
matroids: A002773*, A055545*, A005387*, A056642*, A058673*, A058712*, A058718*, A058721*
matroids: see also A034329 A034330 A034331 A034332 A034333 A034334 A034335 A034336
matroids|, <a NAME="matroid_end">sequences related to (start):</a>
Maundy cake: A006022
Max Alekseyev's problem: see <a href="Sindx_Do.html#repeat">doubling substrings</a>
max(x,y): A003984*, A051125*
maximal intersecting families of sets: A007006, A007007, A007008
McKay-Thompson sequences  or series, <a NAME="McKay_Thompson">sequences related to (start):</a>
McKay-Thompson sequences for Monster simple group: see McKay-Thompson series
McKay-Thompson series of class 001A: A000521 A007240 A014708
McKay-Thompson series of class 001a: A154272
McKay-Thompson series of class 002A: A007241 A007267 A045478 A101558
McKay-Thompson series of class 002a: A007242
McKay-Thompson series of class 002B: A007191 A007246 A045479
McKay-Thompson series of class 002b: A154272
McKay-Thompson series of class 003A: A007243 A030197 A045480
McKay-Thompson series of class 003B: A007244 A030182 A045481
McKay-Thompson series of class 003C: A007245
McKay-Thompson series of class 004A: A007246 A045479 A107080 A134786
McKay-Thompson series of class 004a: A007250
McKay-Thompson series of class 004B: A007247
McKay-Thompson series of class 004C: A007248
McKay-Thompson series of class 004D: A007249
McKay-Thompson series of class 005A: A007251 A045482
McKay-Thompson series of class 005a: A007253
McKay-Thompson series of class 005B: A007252 A045483
McKay-Thompson series of class 006A: A007254 A045484
McKay-Thompson series of class 006a: A007260
McKay-Thompson series of class 006B: A007255 A045485
McKay-Thompson series of class 006b: A007261
McKay-Thompson series of class 006C: A007256 A045486
McKay-Thompson series of class 006c: A007262
McKay-Thompson series of class 006D: A007257 A045487
McKay-Thompson series of class 006d: A007263
McKay-Thompson series of class 006E: A007258 A045488 A105559 A128632 A128633
McKay-Thompson series of class 006F: A007259
McKay-Thompson series of class 007A: A007264 A030183 A045489
McKay-Thompson series of class 007B: A030181 A052240
McKay-Thompson series of class 008A: A007265 A045490 A134785
McKay-Thompson series of class 008a: A112144
McKay-Thompson series of class 008b: A058088
McKay-Thompson series of class 008B: A112142
McKay-Thompson series of class 008C: A052241
McKay-Thompson series of class 008c: A112145
McKay-Thompson series of class 008D: A112143
McKay-Thompson series of class 008E: A029841
McKay-Thompson series of class 008F: A022601
McKay-Thompson series of class 009A: A007266 A045491
McKay-Thompson series of class 009a: A058092
McKay-Thompson series of class 009B: A058091
McKay-Thompson series of class 009b: A112146
McKay-Thompson series of class 009c: A058095
McKay-Thompson series of class 009d: A058096
McKay-Thompson series of class 010A: A058097
McKay-Thompson series of class 010a: A058102
McKay-Thompson series of class 010B: A058098
McKay-Thompson series of class 010b: A058103
McKay-Thompson series of class 010C: A058099
McKay-Thompson series of class 010c: A058204
McKay-Thompson series of class 010D: A058100 A132130
McKay-Thompson series of class 010E: A058101 A138516 A139381
McKay-Thompson series of class 011A: A003295 A058205 A134784 A128525
McKay-Thompson series of class 012a: A058489
McKay-Thompson series of class 012A: A112147
McKay-Thompson series of class 012B.: A045488 A007258 A112148
McKay-Thompson series of class 012b: A058490
McKay-Thompson series of class 012C: A058206
McKay-Thompson series of class 012c: A058491
McKay-Thompson series of class 012d: A058492
McKay-Thompson series of class 012D: A101127
McKay-Thompson series of class 012E: A058483
McKay-Thompson series of class 012e: A058493
McKay-Thompson series of class 012F: A058484
McKay-Thompson series of class 012f: A112149
McKay-Thompson series of class 012G: A058485
McKay-Thompson series of class 012H: A058486
McKay-Thompson series of class 012I: A058487
McKay-Thompson series of class 012J: A022599
McKay-Thompson series of class 013A: A034318 A034319
McKay-Thompson series of class 013B: A058496
McKay-Thompson series of class 014A: A058497 A134782
McKay-Thompson series of class 014a: A058505
McKay-Thompson series of class 014B: A058503
McKay-Thompson series of class 014b: A058506
McKay-Thompson series of class 014C: A058504
McKay-Thompson series of class 014c: A058507
McKay-Thompson series of class 015A: A058508 A134783
McKay-Thompson series of class 015a: A058512
McKay-Thompson series of class 015B: A058509
McKay-Thompson series of class 015b: A058513
McKay-Thompson series of class 015C: A058510
McKay-Thompson series of class 015D: A058511
McKay-Thompson series of class 016A: A058514
McKay-Thompson series of class 016a: A112150
McKay-Thompson series of class 016B: A029839
McKay-Thompson series of class 016b: A112151
McKay-Thompson series of class 016C: A058516
McKay-Thompson series of class 016c: A112152
McKay-Thompson series of class 016d: A082304
McKay-Thompson series of class 016e: A058526
McKay-Thompson series of class 016f: A112153
McKay-Thompson series of class 016g: A112154
McKay-Thompson series of class 016h: A112155
McKay-Thompson series of class 017A: A058530
McKay-Thompson series of class 018A: A058531
McKay-Thompson series of class 018a: A058536
McKay-Thompson series of class 018B: A058532
McKay-Thompson series of class 018b: A058537
McKay-Thompson series of class 018C: A058533
McKay-Thompson series of class 018c: A058538
McKay-Thompson series of class 018d: A058539
McKay-Thompson series of class 018D: A062242
McKay-Thompson series of class 018E: A058535
McKay-Thompson series of class 018e: A058543
McKay-Thompson series of class 018f: A058544
McKay-Thompson series of class 018g: A112156
McKay-Thompson series of class 018h: A058546
McKay-Thompson series of class 018i: A112157
McKay-Thompson series of class 018j: A058548
McKay-Thompson series of class 019A: A058549 A136569
McKay-Thompson series of class 020a: A058556
McKay-Thompson series of class 020A: A112158
McKay-Thompson series of class 020B: A058551
McKay-Thompson series of class 020b: A058557
McKay-Thompson series of class 020c: A058558
McKay-Thompson series of class 020C: A112159
McKay-Thompson series of class 020D: A058553
McKay-Thompson series of class 020d: A058559
McKay-Thompson series of class 020E: A058554
McKay-Thompson series of class 020e: A058560
McKay-Thompson series of class 020F: A058555
McKay-Thompson series of class 021A: A058563
McKay-Thompson series of class 021B: A058564
McKay-Thompson series of class 021C: A058565
McKay-Thompson series of class 021D: A058566
McKay-Thompson series of class 022A: A058567
McKay-Thompson series of class 022a: A058569
McKay-Thompson series of class 022B: A058568
McKay-Thompson series of class 023A: A058570 A134781
McKay-Thompson series of class 024A: A058571 A058572
McKay-Thompson series of class 024a: A058584
McKay-Thompson series of class 024b: A112162
McKay-Thompson series of class 024C: A058573
McKay-Thompson series of class 024c: A062243
McKay-Thompson series of class 024D: A058574
McKay-Thompson series of class 024d: A058587
McKay-Thompson series of class 024E: A112160
McKay-Thompson series of class 024e: A112163
McKay-Thompson series of class 024F: A058576
McKay-Thompson series of class 024f: A058589
McKay-Thompson series of class 024G: A112161
McKay-Thompson series of class 024g: A112164
McKay-Thompson series of class 024H: A058578
McKay-Thompson series of class 024h: A112165
McKay-Thompson series of class 024I: A058579 A138688
McKay-Thompson series of class 024i: A112166
McKay-Thompson series of class 024J: A022597
McKay-Thompson series of class 024j: A112167
McKay-Thompson series of class 025A: A058594
McKay-Thompson series of class 025a: A096563
McKay-Thompson series of class 026A: A058596
McKay-Thompson series of class 026a: A058598
McKay-Thompson series of class 026B: A058597
McKay-Thompson series of class 027A: A058599
McKay-Thompson series of class 027a: A058600
McKay-Thompson series of class 027B: A058599
McKay-Thompson series of class 027b: A058601
McKay-Thompson series of class 027c: A062246
McKay-Thompson series of class 027d: A058604
McKay-Thompson series of class 027e: A112168
McKay-Thompson series of class 028A: A058606
McKay-Thompson series of class 028a: A058610
McKay-Thompson series of class 028B: A112169
McKay-Thompson series of class 028C: A058608
McKay-Thompson series of class 028D: A058609
McKay-Thompson series of class 029A: A058611 A136570
McKay-Thompson series of class 030A: A058612
McKay-Thompson series of class 030a: A058619
McKay-Thompson series of class 030B: A058613
McKay-Thompson series of class 030b: A058623
McKay-Thompson series of class 030C: A058614
McKay-Thompson series of class 030c: A058624
McKay-Thompson series of class 030D: A058615
McKay-Thompson series of class 030d: A058625
McKay-Thompson series of class 030E: A058616
McKay-Thompson series of class 030e: A058626
McKay-Thompson series of class 030F: A058617
McKay-Thompson series of class 030f: A112170
McKay-Thompson series of class 030G: A058618 A135213
McKay-Thompson series of class 031A: A058628
McKay-Thompson series of class 032A: A058629
McKay-Thompson series of class 032a: A107635
McKay-Thompson series of class 032B: A058630
McKay-Thompson series of class 032b: A058632
McKay-Thompson series of class 032c: A112171
McKay-Thompson series of class 032d: A112172
McKay-Thompson series of class 032e: A082303
McKay-Thompson series of class 033A: A058636
McKay-Thompson series of class 033B: A058637
McKay-Thompson series of class 034A: A058638
McKay-Thompson series of class 034a: A058639
McKay-Thompson series of class 035A: A058640
McKay-Thompson series of class 035a: A058643
McKay-Thompson series of class 035B: A058641
McKay-Thompson series of class 036A: A058644
McKay-Thompson series of class 036a: A058648
McKay-Thompson series of class 036B: A062244
McKay-Thompson series of class 036b: A112173
McKay-Thompson series of class 036C: A058646
McKay-Thompson series of class 036c: A058650
McKay-Thompson series of class 036D: A058647
McKay-Thompson series of class 036d: A112174
McKay-Thompson series of class 036e: A112175
McKay-Thompson series of class 036f: A112176
McKay-Thompson series of class 036g: A103262
McKay-Thompson series of class 036h: A112177
McKay-Thompson series of class 036i: A112178
McKay-Thompson series of class 038A: A058657
McKay-Thompson series of class 038a: A058658
McKay-Thompson series of class 039A: A058659
McKay-Thompson series of class 039B: A058660
McKay-Thompson series of class 039C: A058661
McKay-Thompson series of class 040A: A058662
McKay-Thompson series of class 040a: A112180
McKay-Thompson series of class 040b: A058666
McKay-Thompson series of class 040B: A112179
McKay-Thompson series of class 040C: A058664
McKay-Thompson series of class 040c: A112181
McKay-Thompson series of class 040d: A112182
McKay-Thompson series of class 040e: A112183
McKay-Thompson series of class 041A: A058670
McKay-Thompson series of class 042A: A058671
McKay-Thompson series of class 042a: A058675
McKay-Thompson series of class 042B: A058672
McKay-Thompson series of class 042b: A058676
McKay-Thompson series of class 042c: A058677
McKay-Thompson series of class 042C: A102314
McKay-Thompson series of class 042D: A058674
McKay-Thompson series of class 042d: A058678
McKay-Thompson series of class 044A: A058679
McKay-Thompson series of class 044a: A058680
McKay-Thompson series of class 044b: A112184
McKay-Thompson series of class 044c: A058683
McKay-Thompson series of class 045A: A058684
McKay-Thompson series of class 045a: A058685
McKay-Thompson series of class 045b: A058686
McKay-Thompson series of class 045c: A112185
McKay-Thompson series of class 046A: A058688
McKay-Thompson series of class 046B: A058688
McKay-Thompson series of class 046C: A058689
McKay-Thompson series of class 046D: A058689
McKay-Thompson series of class 047A: A058690
McKay-Thompson series of class 048A: A058691
McKay-Thompson series of class 048a: A112186
McKay-Thompson series of class 048b: A112187
McKay-Thompson series of class 048c: A112188
McKay-Thompson series of class 048d: A112189
McKay-Thompson series of class 048e: A112190
McKay-Thompson series of class 048f: A112191
McKay-Thompson series of class 048g: A073252
McKay-Thompson series of class 048h: A112192
McKay-Thompson series of class 049a: A058700
McKay-Thompson series of class 049a: A136560
McKay-Thompson series of class 050a: A034320
McKay-Thompson series of class 050A: A058701
McKay-Thompson series of class 050a: A058703
McKay-Thompson series of class 051A: A058704
McKay-Thompson series of class 052A: A058705
McKay-Thompson series of class 052a: A058707
McKay-Thompson series of class 052B: A058706
McKay-Thompson series of class 054A: A058708
McKay-Thompson series of class 054a: A058709
McKay-Thompson series of class 054b: A112193
McKay-Thompson series of class 054c: A112194
McKay-Thompson series of class 054d: A112195
McKay-Thompson series of class 055A: A058713
McKay-Thompson series of class 056A: A058714
McKay-Thompson series of class 056a: A112196
McKay-Thompson series of class 056B: A097793
McKay-Thompson series of class 056b: A112197
McKay-Thompson series of class 056c: A112198
McKay-Thompson series of class 057A: A112199
McKay-Thompson series of class 058a: A058723
McKay-Thompson series of class 059A: A058724
McKay-Thompson series of class 060A: A058725
McKay-Thompson series of class 060a: A112200
McKay-Thompson series of class 060B: A058726
McKay-Thompson series of class 060b: A058732
McKay-Thompson series of class 060C: A058727
McKay-Thompson series of class 060c: A112201
McKay-Thompson series of class 060D: A058728 A143751
McKay-Thompson series of class 060d: A112202
McKay-Thompson series of class 060E: A058729
McKay-Thompson series of class 060e: A112203
McKay-Thompson series of class 060F: A096938
McKay-Thompson series of class 062A: A058736
McKay-Thompson series of class 063a: A112204
McKay-Thompson series of class 064a: A070048
McKay-Thompson series of class 066A: A058739
McKay-Thompson series of class 066a: A058741
McKay-Thompson series of class 066B: A058740
McKay-Thompson series of class 068A: A058742
McKay-Thompson series of class 069A: A058743
McKay-Thompson series of class 070A: A058744
McKay-Thompson series of class 070a: A058746
McKay-Thompson series of class 070B: A058745
McKay-Thompson series of class 071A: A034322
McKay-Thompson series of class 072a: A112205
McKay-Thompson series of class 072b: A112206
McKay-Thompson series of class 072c: A112207
McKay-Thompson series of class 072d: A112208
McKay-Thompson series of class 072e: A003105
McKay-Thompson series of class 076a: A058753
McKay-Thompson series of class 078A: A058754
McKay-Thompson series of class 078B: A058755
McKay-Thompson series of class 080a: A112209
McKay-Thompson series of class 082a: A112210
McKay-Thompson series of class 084A: A058758
McKay-Thompson series of class 084a: A058761
McKay-Thompson series of class 084B: A112211
McKay-Thompson series of class 084C: A112212
McKay-Thompson series of class 087A: A058762
McKay-Thompson series of class 088A: A112213
McKay-Thompson series of class 090a: A112214
McKay-Thompson series of class 090b: A112215
McKay-Thompson series of class 092A: A112216
McKay-Thompson series of class 093A: A112217
McKay-Thompson series of class 094A: A058768
McKay-Thompson series of class 095A: A058769
McKay-Thompson series of class 096a: A000700
McKay-Thompson series of class 102a: A112218
McKay-Thompson series of class 104A: A112219
McKay-Thompson series of class 105A: A058773
McKay-Thompson series of class 110A: A058774
McKay-Thompson series of class 117a: A112220
McKay-Thompson series of class 119A: A058776
McKay-Thompson series of class 120a: A112221
McKay-Thompson series of class 126a: A112222
McKay-Thompson series of class 132a: A112223
McKay-Thompson series of class 140a: A112224
McKay-Thompson series| <a NAME="McKay_Thompson_end">sequences related to (start):</a>
Me DIVIDER
meanders , <a NAME="meander">sequences related to (start):</a>
meanders: A005315*, A005316*
meanders: see also (1): A000257 A000560 A000682 A006657 A006658 A006659 A006660 A006661 A006662 A006663 A006664 A007746 A008828 A046690
meanders: see also (2): A046691 A046721 A046722 A046723 A046724 A046725 A046726
meanders: see also (3): A060066 A060089 A060111 A060148 A060149 A060174 A060198 A060206 A076875* A076876* A076906* A076907*
meanders: see also <a href="Sindx_Fo.html#fold">folding a strip of stamps</a>
meanders|, <a NAME="meander_end">sequences related to (start):</a>
Meeussen sequences: A008934*
menage numbers, <a NAME="menage">sequences related to (start):</a>
menage numbers: A000179*, A000904*
menage numbers: see also A001569, A000222, A000271, A000386, A000426, A000450
menage numbers| <a NAME="menage_end">sequences related to (start):</a>
mens-room permutations: see <a href="Sindx_Pas.html#payphones">pay-phones</a>
merge sort: A001768
merge sort: see also <a href="Sindx_So.html#sorting">sorting</a>
Mersenne , <a NAME="Mersenne">sequences related to (start):</a>
Mersenne numbers 2^p-1: A001348*, A000668*, A000043*, A000225
Mersenne numbers: see also A001351, A003260, A006515
Mersenne primes: A000668* (primes of form 2^p-1), A000043* (p values)
Mersenne|, <a NAME="Mersenne_end">sequences related to (start):</a>
Mertens , <a NAME="Mertens">sequences related to (start):</a>
Mertens's conjecture: A059571*, A059572, A059581
Mertens's function: A002321*
Mertens's function: inverse of: A051400, A051401, A051402, A060434
Mertens's function: zeros of: A028442
Mertens|, <a NAME="Mertens_end">sequences related to (start):</a>
mex (minimal excluded value) = least nonnegative integer not in the set: A080240, A080241
Mian-Chowla sequences, <a NAME="Mian_Chowla">sequences related to (start):</a>
Mian-Chowla sequences: A005282, A051788, A058335
Mian-Chowla sequences: see also A080200, A080201, A080932, A080933
Mian-Chowla sequences| <a NAME="Mian_Chowla_end">sequences related to (start):</a>
Miller-Rabin primality test: see <a href="Sindx_Ps.html#pseudoprimes">pseudoprimes</a>
Mills primes: A051254*
Mills's constant: A051021*
min(x,y): A003983*, A004197*
minimal norm, <a NAME="minimal_norm">sequences related to (start):</a>
minimal norm: A005136 A006984 A028950 A029550 A029551 A029755 A029756 A038501
minimal norm| <a NAME="minimal_norm_end">sequences related to (start):</a>
minimal numbers: A007416
minimal sequence: A002938
Minkowski's question mark function, <a NAME="MinkowskiQ">sequences related to (start):</a>
Minkowski's question mark function, fixed points: A058914*, A120221*, A048817, A048818, A048819, A048820, A048821, A048822
Minkowski's question mark function, global maximum of ?(x)-x: A119719
Minkowski's question mark function, inverse: A065937
Minkowski's question mark function, values obtained at: 1/Pi: A119926 (A119927), 6/Pi^2: A119922 (A119923), Pi: A119924 (A119925), e: A120025 (A120026)
Minkowski's question mark function, values obtained at: Khinchin's constant: A119928 (A119929), Levy's constant: A120028 (A120029)
Minkowski's question mark function: see also <a href="Sindx_St.html#Stern">Index entries for sequences related to Stern's sequences</a>
Minkowski's question mark function| <a NAME="MinkowskiQ_end">sequences related to (start):</a>
misleading plots: see <a href="Sindx_De.html#deceptive">deceptive plots</a>
Mo DIVIDER
mobiles , <a NAME="mobiles">sequences related to (start):</a>
mobiles : A032143, A032160, A032200*, A032202, A038037*
mobiles : A106364
mobiles, 2-colored: A032161, A032172, A032174, A032201, A032204, A032257, A032290, A032293, A052716, A108531, A108532
mobiles, asymmetric: A032171*, A032172, A032174 A032256, A032257, A032259, A055363-A055371
mobiles, by generators, A108526*, A108527-A108529
mobiles, dyslexic: A032218, A032235, A032236, A032237, A032238, A032256, A032257, A032259, A032274, A032289*, A032290, A032292, A032293, A038038*
mobiles, increasing: A029768*, A055356-A055362
mobiles, leaves, A055340*, A055341-A055348, A055349*, A055350-A055371
mobiles, series-reduced: A032163, A032174, A032188, A032203*, A032204, A032292, A032293
mobiles: see also <a href="Sindx_Ro.html#rooted">rooted trees</a>
mobiles|, <a NAME="mobiles_end">sequences related to (start):</a>
Mobius: see Moebius
mobius: see Moebius
Mock theta numbers:: A000025, A000039, A000199
mod(x,y): A051126*, A051127*
models (in statistics), <a NAME="MODELS">sequences related to (start):</a>
models (in statistics): A006126, A006602, A006896, A006897, A006898, A079263, A079265, A000112
models (in statistics)| <a NAME="MODELS_end">sequences related to (start):</a>
modest numbers:  A054986*, A007627, A055018
modular forms, modular function, etc. <a NAME="MODULAR">sequences related to (start):</a>
modular forms: A006352, A006353, A006354
modular function g_2: A003296
modular function G_2: A005760, A006352
modular function g_3: A003297
modular function G_3: A005761
modular function g_4: A005757
modular function G_4: A005762
modular function g_5: A005758
modular function g_6: A005759
modular function G_6: A005764
modular functions (1):: A006709, A002512, A002507, A002511, A002510, A002508, A005760, A005761, A006710, A002509, A005764, A003295, A005762
modular functions (2):: A006707, A006708, A005758, A005757, A005759, A000706
modular function| etc. <a NAME="MODULAR_end">sequences related to (start):</a>
modular group, cusp forms for: see <a href="Sindx_Cu.html#cusp_forms">cusp forms</a>
modular groups: see <a href="Sindx_Gre.html#groups_modular">groups, modular</a>
Moebius (or Mobius) function mu(n) , <a NAME="MOEBIUS">sequences related to (start):</a>
Moebius (or Mobius) function mu(n): A008683*, A007423, A002321, A002996
Moebius function, infinitary: A064179
Moebius function: the official symbol in the OEIS is mu (see A008683), not MoebiusMu nor mobius, etc., except in Maple, Mma, etc lines where it cannot be changed
Moebius is the official spelling of this name in the OEIS (except in Maple, Mma, etc lines where it cannot be changed)
Moebius transform: see <a href="transforms.txt">Transforms</a> file
Moebius transforms:: (1) A007432, A007444, A007427, A007554, A003238, A007435, A007436, A007445, A007438, A007431, A007428, A007425
Moebius transforms:: (2) A007551, A007434, A007426, A007429, A007437, A007430, A007433
Moebius| (or Mobius) function mu(n) , <a NAME="MOEBIUS_end">sequences related to (start):</a>
Molecular species:: A007649
Molien series , <a NAME="Molien">sequences from (start):</a> [remember these are "reduced"]
Molien series, harmonic: A008924
Molien series, of 4-D groups (1): A005916 A008610 A008623 A008627 A008643 A008650 A008667 A008668 A008669 A008670 A008718 A013977
Molien series, of 4-D groups (2): A013978 A028249 A028288 A030533 A068491 A078404 A078411
Molien series: (1+x^10+x^20)/((1-x^6)*(1-x^15)): A008651
Molien series: (1+x^15)/((1-x^2)*(1-x^6)*(1-x^10)): A008613
Molien series: (1+x^15)/((1-x^2)*(1-x^6)*(1-x^15)): A005868
Molien series: (1+x^21)/((1-x^4)*(1-x^6)*(1-x^14)): A008614
Molien series: (1+x^3)/(1-x^2)^2: A028242
Molien series: (1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)): A028288
Molien series: (1+x^6+x^9+x^15)/((1-x^4)*(1-x^12)): A008647
Molien series: (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)): A008718
Molien series: (1+x^9)/((1-x^4)*(1-x^6): A008647
Molien series: -/1,2,3,4: A001400
Molien series: -/1,2,4,6: A099770
Molien series: -/1,2,4,8: A008643
Molien series: -/1,2: A008619
Molien series: -/1,3,4,6: A008670
Molien series: -/1,3,5: A008672
Molien series: -/1,3,7: A025768
Molien series: -/1,3,9,27: A008650
Molien series: -/1,3,9: A008649
Molien series: -/1,3: A008620
Molien series: -/1,4,16: A008652
Molien series: -/1,4,6,7,9,10,12,15: A008582
Molien series: -/1,4,8: A092352
Molien series: -/1,4: A008621
Molien series: -/1,5,25: A008648
Molien series: -/1,5: A002266
Molien series: -/1,6: A097992, A054895
Molien series: -/12,18,24,30: A008667
Molien series: -/2,12,20,30: A008668
Molien series: -/2,12: A097992
Molien series: -/2,2,11: A008723
Molien series: -/2,3,5,6: A029143
Molien series: -/2,3: A008615
Molien series: -/2,5,6,8,9,12: A008584
Molien series: -/2,6,10: A008672
Molien series: -/2,6,8,10,12,14,18: A008593
Molien series: -/2,6,8,12: A008670
Molien series: -/2,8,12,14,18,20,24,30: A008582 (E_8)
Molien series: -/2,8: A008621
Molien series: -/4,12: A008620
Molien series: -/4,6,10,12,18: A008666
Molien series: -/4,6,7: A008622
Molien series: -/4,6: A008615
Molien series: -/4,8,12,20: A008669
Molien series: -/6,12,18,24,30,42: A008581
Molien series: -/8,24: A008620
Molien series: 0+2+4/3,3: A008611
Molien series: 0+20+40/12,30: A008651
Molien series: 0+3+4+5/2,2,3,6: A051630
Molien series: 0+6+9+15/4,12: A008647
Molien series: 0+8+16/2,4,6: A028309
Molien series: 1/((1-x)*(1-x^2)^2*(1-x^3)): A008763
Molien series: 1/((1-x)*(1-x^3)): A008620
Molien series: 1/((1-x)*(1-x^4)): A008621
Molien series: 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)): A029143
Molien series: 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^8)*(1-x^9)*(1-x^12)): A008584
Molien series: 10/1,2,3,4,5: A008628
Molien series: 10/1,2,3,5: A020702
Molien series: 10/2,3,4,5: A090492
Molien series: 12/2,6,8,12: A028249
Molien series: 12/4,8,8: A004652
Molien series: 12/6,8: A008612
Molien series: 15/1,2,3,4,5,6: A008629
Molien series: 15/2,6,10: A008613
Molien series: 18/1,4,8,12: A092508
Molien series: 18/2,8,12,24: A008718
Molien series: 18/8,12,24: A090176
Molien series: 18/8,12: A008647
Molien series: 2/1,1,2,3: A014126
Molien series: 2/1,1,3: A007980
Molien series: 21/4,6,14: A008614
Molien series: 3/1,2,2,4: A005232
Molien series: 3/1,2,3: A007997
Molien series: 3/1,2: A028310
Molien series: 4/1,3,3,5: A028288
Molien series: 4/2,2,3: A008796
Molien series: 40/4,8,12,20: A020702
Molien series: 45/6,12,30: A005868
Molien series: 5/3,4: A091972
Molien series: 6/1,2,3,4: A008627
Molien series: 6/1,3,4: A036410
Molien series: 6/2,3,4: A008742
Molien series: 6/4,4: A028242
Molien series: 6/4,8: A008624
Molien series: 8/1,2,3,4: A008769
Molien series: 8/1,4: A092533
Molien series: 9/2,4,6: A008743
Molien series: for Aut(Leech) or Con.0: A008925, A008924
Molien series: for J2: A005813
Molien series|, <a NAME="Molien_end">sequences from (start):</a> [remember these are "reduced"]
MOLS, see <a href="Sindx_La.html#Latin">Latin squares, mutually orthogonal</a>
money: see <a href="Sindx_Se.html#tiny4">sequences offering a monetary reward</a>
monoids , <a NAME="monoids">sequences related to (start):</a>
monoids , see also <a href="Sindx_Se.html#semigroups">semigroups</a>
monoids : A058129*, A058133*, A058153*, A058154
monoids, asymmetric: A058130*, A058134, A058135, A058136*, A058140, A058141, A058150-A058152
monoids, by idempotents: A058137*, A058138-A058145, A058146*, A058147-A058152, A058157*, A058158-A058160
monoids, commutative: A058131*, A058134, A058142, A058143, A058150, A058155*, A058156, A058159, A058160
monoids, free: A005345
monoids, Girard: A034786
monoids, idempotent: A005345, A058112*
monoids, number of multiplications needed for: A075099
monoids, ordered: A030453
monoids, self-converse: A058132*, A058135, A058144-A058146, A058151
monoids|, <a NAME="monoids_end">sequences related to (start):</a>
Monster , <a NAME="Monster">sequences related to (start):</a>
Monster simple group, McKay-Thompson series for: see <a href="Sindx_Mat.html#McKay_Thompson">McKay-Thompson series</a>
Monster simple group: A003131*, A001379*, A002267, A051161
Monster|, <a NAME="Monster_end">sequences related to (start):</a>
months: of year: A008685*, A031139
months: see also <a href="Sindx_Ca.html#calendar">calendar</a>
Montreal solitaire:: A007048, A007075, A007049, A007050, A007046, A007076
Moon (1987), "Some enumerative results on series-parallel networks", <a NAME="Moon87">sequences mentioned in (start):</a>
Moon (1987), "Some enumerative results on series-parallel networks": (1) A000311 A000669 A006351 A058379 A058380 A058381 A058385 A058386 A058387 A058388 A058406 A058475
Moon (1987), "Some enumerative results on series-parallel networks": (2) A058476 A058477 A058478 A058479 A058480 A058488 A058494 A058495
Moon (1987)| "Some enumerative results on series-parallel networks", <a NAME="Moon87_end">sequences mentioned in (start):</a>
Moran numbers: A001101*
more terms needed!, see <a href="Sindx_Se.html#extend">sequences that need extending</a>
more terms needed!, see also huge web page with <a href="more.html">full list of sequences that need extending</a>
morphisms, fixed points of, see: <a href="Sindx_Fi.html#FIXEDPOINTS">fixed points of mappings</a>
mosaic numbers: A000026*
Moser-de Bruijn sequence: sums of distinct powers of 4: A000695*
most significant bit (msb): A053644, A000523
motifs: A007017*
Motzkin numbers, <a NAME="Motzkin">sequences related to (start):</a>
Motzkin numbers: A001006*
Motzkin numbers: see also A005554
Motzkin triangle: A026300*, A020474, A064189
Motzkin triangle: see also A005322, A005323, A005324, A005325
Motzkin| numbers, <a NAME="Motzkin_end">sequences related to (start):</a>
mousetrap game, <a NAME="mousetrap">sequences related to (start):</a>
mousetrap game: A002467 A002468 A002469 A007709 A007710 A018931 A018932 A018933 A018934 A028305 A028306
mousetrap game| <a NAME="mousetrap_end">sequences related to (start):</a>
Mozart: A064172 A027884 A027885
Mozart: see also <a href="Sindx_Mu.html#music">music</a>
Mrs Perkins's quilt: A005670, A005842, A089046, A089047
msb = most significant bit: A053644, A000523
Mu DIVIDER
Mu Torere: A005655
mu(n): A008683*
mu(n): see <a href="Sindx_Mo.html#MOEBIUS">Moebius function</a>
MU-numbers: A007335
mult: keyword meaning multiplicative, that is, a(m*n) = a(m)*a(n) whenever g.c.d.(m,n) = 1
multigraphs, <a NAME="multigraphs">sequences related to (start):</a>
multigraphs: (1) A000421 A001374 A001399 A002620 A003082 A004102 A004104 A004105 A005965 A005966 A007717 A014395
multigraphs: (2) A014396 A014397 A014398 A020554 A020555 A020556 A020557 A020558 A020559 A020560 A020561 A020562
multigraphs: (3) A020563 A020564 A020565 A050531 A050532 A050535 A050927 A050929 A050930 A052107 A052108 A052111
multigraphs: (4) A052112 A052113 A052114 A052151 A052152 A052170 A052171 A053400 A053420 A053421 A053465 A053466
multigraphs: (5) A053467 A053468 A053513 A053514 A053515 A053516 A053517 A053588 A063841* A063842 A063843
multigraphs| <a NAME="multigraphs_end">sequences related to (start):</a>
Multinomial coefficients:: A005651
Multiplication-cost:: A005766
Multiplicative encodings:: A007280, A007188, A007190, A007189, A007338
multiplicative means that a(m*n) = a(m)*a(n) whenever g.c.d.(m,n) = 1
multiplicative order , <a NAME="multiplicative_order">sequences related to (start):</a>
multiplicative order of 2 mod n, ord(2,n): A002326
multiplicative order of x mod y, ord(x,y), sequences related to: (1) A002326 A037226 A046932 A053006 A053446 A053447 A053448 A053449 A053450 A053451 A053452 A053453
multiplicative order of x mod y, ord(x,y), sequences related to: (2) A057764 A059499 A059885 A059886 A059887 A059888 A059889 A059890 A059891 A059892 A059907 A059908
multiplicative order of x mod y, ord(x,y), sequences related to: (3) A059909 A059910 A059911
multiplicative order|, <a NAME="multiplicative_order_end">sequences related to (start):</a>
multiplicative, completely  , <a NAME="multiplicative_completely">sequences related to (start):</a>
multiplicative, completely (00): means that a(m*n) = a(m)*a(n) for all m and n >= 1
multiplicative, completely (01): A000004 A000007 A000012 A000027 A000035 A000265 A000290 A000578 A000583 A000584 A001014 A001015 A001016 A001017 A001477 A003958 A003959 A003960
multiplicative, completely (02): A003961 A003962 A003963 A003964 A003965 A006519 A008454 A008455 A008456 A008836 A010801 A010802 A010803 A010804 A010805 A010806 A010807 A010808
multiplicative, completely (03): A010809 A010810 A010811 A010812 A010813 A011582 A011583 A011584 A011585 A011586 A011587 A011588 A011589 A011590 A011591 A011558 A011592 A011593
multiplicative, completely (04): A011594 A011595 A011596 A011597 A011598 A011599 A011600 A011601 A011602 A011603 A011604 A011605 A011606 A011607 A011608 A011609 A011610 A011611
multiplicative, completely (05): A011612 A011613 A011614 A011615 A011616 A011617 A011618 A011619 A011620 A011621 A011622 A011623 A011624 A011625 A011626 A011627 A011628 A011629
multiplicative, completely (06): A011630 A011631 A028310 A034947 A036987 A038500 A038502 A055975 A057427 A060904 A061109 A061142 A061898 A063524 A064553 A064558 A064614 A064988
multiplicative, completely (07): A064989 A065330 A065331 A065332 A065333 A065338 A065371 A065372 A066260 A066261 A071785 A071786 A072010 A072012 A072026 A072027 A072028 A072029
multiplicative, completely (08): A072084 A072085 A072087 A072436 A072438 A072963 A079065 A079579 A079707 A080891 A086299 A089081 A091684 A091685 A091703 A093709 A098108 A101455
multiplicative, completely (09): A102440 A102441 A108548 A108951 A112347 A113175 A120119 A122261 A123667 A122968-A122971
multiplicative, completely|, <a NAME="multiplicative_completely_end">sequences related to (start):</a>
multiplicative, strongly: see <a href="Sindx_Mu.html#multiplicative_completely">multiplicative, completely</a>
multiplicative, totally: see <a href="Sindx_Mu.html#multiplicative_completely">multiplicative, completely</a>
multiplicatively perfect numbers: A007422*
multiply-perfect numbers: A007539*, A007691*
music, <a NAME="music">sequences related to (start):</a>
music: Beethoven: A001491, A054245, A123456
music: Mozart: A064172 A027884 A027885
music: Norgard, Per: A004718* A005811 A073334 A083866 A135564 A135567 A135689 A135690 A135692 A136004
music: scales: A071831/A071832, A071833
music| <a NAME="music_end">sequences related to (start):</a>
mutinous numbers: A027854
mutually orthogonal Latins squares, see <a href="Sindx_La.html#Latin">Latin squares, mutually orthogonal</a>
M\"{o}bius: see <a href="Sindx_Mo.html#MOEBIUS">Moebius function</a>
M\'{e}nage: see permutations, menage and polynomials, menage
N DIVIDER
n -> 3n - sigma(n), <a NAME="tiny3">sequences related to (start):</a>
n -> 3n - sigma(n): A033885, A033945, A033946, A037159, A037160, A058541, A058542, A058545
n -> 3n - sigma(n)| <a NAME="tiny3_end">sequences related to (start):</a>
n appears n times: A002024*, A003056, A001462, A007401, A004797
n divides concatenation of all numbers up through n , <a NAME="concat">sequences related to (start):</a>
n divides concatenation of all numbers up through n: (01) A029471 A029472 A029473 A029474 A029475 A029476 A029477 A029478 A029479 A029480 A029481 A029482
n divides concatenation of all numbers up through n: (02) A029483 A029484 A029485 A029486 A029487 A029489 A029490 A029491 A029492 A029493 A029494 A029495
n divides concatenation of all numbers up through n: (03) A029496 A029497 A029498 A029499 A029500 A029501 A029502 A029503 A029504 A029505 A029506 A029507
n divides concatenation of all numbers up through n: (04) A029508 A029509 A029510 A029511 A029513 A029514 A029515 A029516 A029517 A029518 A029519 A029520
n divides concatenation of all numbers up through n: (05) A029521 A029522 A029523 A029524 A029525 A029526 A029527 A029528 A029529 A029530 A029531 A029532
n divides concatenation of all numbers up through n: (06) A029533 A029534 A029535 A029536 A029537 A029538 A029539 A029540 A029541 A029542 A061931 A061932
n divides concatenation of all numbers up through n: (07) A061933 A061934 A061935 A061936 A061937 A061938 A061939 A061940 A061941 A061942 A061943 A061944
n divides concatenation of all numbers up through n: (08) A061945 A061946 A061947 A061948 A061949 A061950 A061951 A061952 A061953 A061954 A061955 A061956
n divides concatenation of all numbers up through n: (09) A061957 A061958 A061959 A061960 A061961 A061962 A061963 A061964 A061965 A061966 A061967 A061968
n divides concatenation of all numbers up through n: (10) A061969 A061970 A061971 A061972 A061973 A061974 A061975 A061976 A061977 A061978
n divides concatenation of all numbers up through n|, <a NAME="concat_end">sequences related to (start):</a>
n reversed, R(n): A004086
n!!, see <a href="Sindx_Fa.html#factorial">factorial numbers, double</a>
n!+1: A038507*, A002583, A051301, A056111
n!-1: A033312*, A002582, A054415, A056110
n!/2: A001710
n!: A000142*
n!: see also <a href="Sindx_Fa.html#factorial">factorial numbers</a>
n# (1st definition of primorial numbers: product of primes <= n): A034386*, A002110
N-free graphs: A007596*
n-phi-torial: A001783*
Na DIVIDER
Narayana , <a NAME="Narayana">sequences related to (start):</a>
Narayana triangle (also called Catalan triangle): A001263*
Narayana-Zidek-Capell numbers: A002083*
Narayana|, <a NAME="Narayana_end">sequences related to (start):</a>
narcissistic numbers, <a NAME="narcissistic">sequences related to (start):</a>
narcissistic numbers: A005188*
narcissistic numbers: see also A003321, A014576, A033842, A023052, A046074
narcissistic numbers| <a NAME="narcissistic_end">sequences related to (start):</a>
natural numbers, <a NAME="natural">sequences related to (start):</a>
natural numbers, A000027*
natural numbers, in base 2: A000042; see also A038102
natural numbers, in bases 1 through 10: A000042, A007088, A007089, A007090, A007091, A007092, A007093, A007094, A007095, A000027
natural numbers, rearrangement of (2): A075086, A075087, A075375, A075378, A075380, A075383, A075562, A075563, A075564, A075566, A075567
natural numbers, rearrangement of (3): A075616, A075617, A075618, A076053, A076099, A076123, A077220, A078840, A082748, A083164, A083180
natural numbers, rearrangement of (4): A083762, A084035, A084337, A084393, A084398, A085100, A085875, A086496, A086512, A086537, A087559
natural numbers, rearrangement of (5): A089560, A089562, A089564, A089566, A089568, A089570, A089572, A089710, A094339, A095167, A096113
natural numbers, rearrangement of (6): A103849, A103877, A109890, A110354, A111679, A128280, A130108, A130109, A130110, A130111
natural numbers, rearrangement of (conjectured or otherwise)(1): A065263, A073666, A073672, A073673, A073675, A073678, A073842, A075085
natural numbers, see also: A007432, A003137, A007376, A007062, A007431, A003607, A007429, A007466, A007550, A007430
natural numbers| <a NAME="natural_end">sequences related to (start):</a>
Ne DIVIDER
near-rings, <a NAME="near_rings">sequences related to (start):</a>
near-rings: A037221*
near-rings| <a NAME="near_rings_end">sequences related to (start):</a>
necklaces , <a NAME="necklaces">sequences related to (start):</a>
necklaces , A000031*, A000358, A007997, A008610, A008646, A008965, A032191-A032197
necklaces, 2 colors, no turning over, primitive: A001037*
necklaces, 2 colors, no turning over: A000031*, A066318*
necklaces, 2 colors, turning over allowed, primitive: A001371*
necklaces, 2 colors, turning over allowed: A000029*
necklaces, 3-colored, A001867*, A032179*
necklaces, 3-colored, A106365
necklaces, 4-colored, A001868*
necklaces, 4-colored, A106366
necklaces, 5-colored, A001869*
necklaces, 5-colored, A106367
necklaces, 6-colored, A106368
necklaces, aperiodic: see <a href="Sindx_Lu.html#Lyndon">Lyndon words</a>
necklaces, array of, A075195
necklaces, asymmetric: see <a href="Sindx_Lu.html#Lyndon">Lyndon words</a>
necklaces, balanced, A000108, A003239*, A007147, A045629
necklaces, charged, A042943, A045611, A045612
necklaces, complements are equivalent, A000013*, A045629, A058813
necklaces, multicolored, A054625-A054629
necklaces, permutations, A003322
necklaces, reversible, see also <a href="Sindx_Br.html#bracelets">bracelets</a>
necklaces, triangle of, A047996*, A052311, A052312, A052313, A054630, A054631
necklaces, triangle, A047996*, A052311, A052312, A052313
necklaces: see also (1): A000016, A000046, A002075, A002076, A002729, A005594, A007977, A027882, A032180-A032184, A032189
necklaces: see also (2): A032190, A032198, A032199, A045674-A045678, A007769, A029744
necklaces: see also (2): A106369
necklaces: see also <a href="Sindx_Br.html#bracelets">bracelets</a>, <a href="Sindx_Lu.html#Lyndon">Lyndon words</a>
necklaces|, <a NAME="necklaces_end">sequences related to (start):</a>
negative numbers: A001478*
Negative pseudo-squares:: A001984
neofields: A006609*
nets, <a NAME="nets">sequences related to (start):</a>
nets: A005929, A002880, A004106, A004103*, A005928, A004105, A004107
nets: see also under graphs
nets| <a NAME="nets_end">sequences related to (start):</a>
networks, <a NAME="networks">sequences related to (start):</a>
networks:: A001677, A006246, A001573, A006351, A006245, A001574, A001572, A006248, A006349, A006350, A001575
networks| <a NAME="networks_end">sequences related to (start):</a>
next prime , <a NAME="next_prime">sequences related to (start):</a>
next prime after terms of various sequences: see under <a href="Sindx_Pra.html#previous_prime">previous prime</a>
next prime, A007918
next prime: version 1: A007918, version 2: A151800
next prime|, <a NAME="next_prime_end">sequences related to (start):</a>
nexus numbers  , <a NAME="nexus">sequences related to (start):</a>
nexus numbers (1): A047969 A022521 A022522 A022523 A022524 A022525 A022526 A022527 A022528 A022529 A022530 A022531 A022532
nexus numbers (2): A022533 A022534 A022535 A022536 A022537 A022538 A022539 A022540 A079547
nexus numbers|, <a NAME="nexus_end">sequences related to (start):</a>
Ni DIVIDER
Niemeier lattices, <a NAME="Niemeier">sequences related to (start):</a>
Niemeier lattices, theta series of (cf. <a href="http://www.research.att.com/~njas/doc/splag.html">SPLAG</a> p. 407) (1): A008688 A047803 A008411 A008689 A008690 A008691 A047804 A008692 A008693 A008694 A008695 A047805 A047806 A008696
Niemeier lattices, theta series of (cf. <a href="http://www.research.att.com/~njas/doc/splag.html">SPLAG</a> p. 407) (2): A008697 A008698 A008699 A047807 A008700 A008701 A008702 A008703 A008704 A008408
Niemeier lattices| <a NAME="Niemeier_end">sequences related to (start):</a>
nilpotent numbers: A056867, A056868
Nim-addition: see <a href="Sindx_Ni.html#Nimsums">Nim-sums</a>
Nim-multiplication  , <a NAME="Nimmult">sequences related to (start):</a>
Nim-multiplication in Maple: see A051775*, A051776*
Nim-multiplication table: A051775*, A051776*, A051910*, A051911*
Nim-multiplication, inverses: A051917
Nim-multiplication, squares: A006042
Nim-multiplication: see also (1) A004468 A004469 A004470 A004471 A004472 A004473 A004474 A004475 A004476 A004477 A004478 A004479
Nim-multiplication: see also (2) A004480 A006015 A006017 A058734
Nim-products: see Nim-multiplication
Nim-products| , <a NAME="Nimmult_end">sequences related to (start):</a>
Nim-sums  , <a NAME="Nimsums">sequences related to (start):</a>
Nim-sums in Maple: see A003987*, A051933*
Nim-sums table: A003987*, A051933*
Nim-sums: see also (1) A004442 A004443 A004444 A004445 A004446 A004447 A004448 A004449 A004450 A004451 A004452 A004453
Nim-sums: see also (2) A004454 A004455 A004456 A004457 A004458 A004459 A004460 A004461 A004462 A004463 A004464 A004465
Nim-sums: see also (3) A004514 A004515 A004516 A004517 A004518 A004519 A004520 A004521 A004522 A038712 A038713 A054517
Nim-sums| , <a NAME="Nimsums_end">sequences related to (start):</a>
Nim:: A006015, A003413, A003412, A006042, A006017, A001581
nineish numbers (decimal expansion contains a 9): A011539
Niven numbers: A005349*
Niven's constant: A033151*
No DIVIDER
no-three-in-line problem: A000769*
no-three-in-line problem: see also A000755, A037185, A037186, A037187, A037188, A037189, A107355, A007402, A000938
Noergaard, Per: see <a href="Sindx_No.html#Norgard">Norgard, Per</a>
nome: see <a href="Sindx_J.html#nome">Index entries for sequences related to the Jacobi nome</a>
non-collinear points in cube: A003142
Non-Hamiltonian:: A007030, A007031, A007032, A007033
non-mathematical sequences  , <a NAME="non_mathematical">sequences related to (start):</a>
non-mathematical sequences (00): a tentative list courtesy of Franklin T. Adams-Watters
non-mathematical sequences (01): A000053, A000054, A001049, A001356, A001491, A002651, A003671-A003673,
non-mathematical sequences (02): A003675-A003678, A003786, A005600, A005601, A006833, A006834, A007656,
non-mathematical sequences (03): A007826, A008684-A008686, A008744-A008746, A009734, A011554, A011763,
non-mathematical sequences (04): A011765, A011766, A011770, A011771, A027440, A027884, A027885, A029925,
non-mathematical sequences (05): A029915-A029928, A031139, A033171-A033174, A038674, A051121, A053401,
non-mathematical sequences (06): A053402, A053406, A054245, A055069, A056958, A056997-A056999,
non-mathematical sequences (07): A057347-A057350, A057430, A057720, A058317, A058318, A060512, A060513,
non-mathematical sequences (08): A060958, A061251, A063516, A064172, A064265-A064267, A064296,
non-mathematical sequences (09): A070058-A070060, A070062-A070064, A070273, A072171, A072550, A072915,
non-mathematical sequences (10): A073304, A073305, A078300-A078302, A080915, A080916, A081098-A081101,
non-mathematical sequences (11): A081244, A081245, A081799-A081803, A081813-A081826, A084427, A084989,
non-mathematical sequences (12): A085735, A087778, A090232, A090651, A091786, A091978, A093907, A097105,
non-mathematical sequences (13): A098476, A100000, A100017, A100487, A100488, A101111, A101284-A101287,
non-mathematical sequences (14): A101312, A101358, A101647-A101649, A101944, A104019, A104034, A104101,
non-mathematical sequences (15): A106605, A106806, A107273-A107276, A109553, A109618, A109952, A111167,
non-mathematical sequences (16): A113529, A114062, A115100, A115417, A116369, A116386, A116448, A117635,
non-mathematical sequences (17): A118652, A118661, A118662, A119406, A120441, A121818, A122559, A123456
non-mathematical sequences|, <a NAME="non_mathematical_end">sequences related to (start):</a>
Non-separable:: A006402, A002218, A006411, A006412, A006415, A006413, A006414, A006441
nonagon is spelled 9-gon in the OEIS
nonagonal is spelled 9-gonal in the OEIS
noncubes: A007412*
nonnegative integers: A001477*
nonpositive integers: A001489*
nonprimes: A018252* (nonprimes), A002808* (composites), A014076* (odd composites)
nonrepetitive sequences: A003270, A003324
nonrepetitive sequences: see also <a href="Sindx_Th.html#Thue_Morse">Thue-Morse sequences</a>
nonsquares: A000037*
nontotients: A007617*, A005277
Norgard, Per, <a NAME="Norgard">sequences related to (start):</a>
Norgard, Per: A004718
Norgard, Per: see also A005811 A073334 A083866 A135564 A135567 A135689 A135690 A135692 A136004
Norgard, Per| <a NAME="Norgard_end">sequences related to (start):</a>
Norwegian: A014656, A028292, A092407
Norwegian: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
not a product of earlier terms, see: <a href="Sindx_Sk.html#smallest_number_not">smallest number not a product of earlier terms</a>
not always integral: A003504, A005166, A005167
notation in OEIS: see <a href="Sindx_Sp.html#spell">spelling and notation</a>
noughts and crosses: see <a href="Sindx_Th.html#TTT">tic-tac-toe</a>
NSW numbers: A002315*
Nu DIVIDER
number of positive integers <= 10^n that are divisible by no prime exceeding p: A066343 A100752 A106598 A106600 A107352 A108274 A108275 A108276 A108277
number of primes <= x: A000720*
number of primes <= x: see also <a href="Sindx_Ph.html#PIX">pi(x)</a>
number of syllables to represent n: A002810, A045736
number of ways the set (1^k, 2^k, ..., n^k) can be partitioned into two sets of equal sums: k=1 A058377, k=2 A083527, k=3 A113263, k=4 A111253.
number of words to represent n: A001167
number theory, unsolved problems in: see <a href="Sindx_U.html#numthy">unsolved problems in number theory (selected)</a>
numbers n such that 2^k + n is prime for all k (empty: see A076336)
numbers n such that n*2^k + 1 is composite for all k: A076336
numbers n such that n*2^k + 1 is prime for all k (empty: see A076336)
numbers of form k_1 k_2 .. k_n (1/k_1 + .. + 1/k_n), k_i >= 1: A025052, A027563, A027564, A027565, A027566, A055745
numbers that contain a 0: A011540
numbers that contain a 1: A011531
numbers that contain a 2: A011532
numbers that contain a 3: A011533
numbers that contain a 4: A011534
numbers that contain a 5: A011535
numbers that contain a 6: A011536
numbers that contain a 7: A011537
numbers that contain a 9: A011539
numbers that contain an 8: A011538
numbers, automorphic: see <a href="Sindx_Ar.html#automorphic">automorphic numbers</a>
numbers, Bernoulli: see <a href="Sindx_Be.html#Bernoulli">Bernoulli numbers</a>
numbers, Euler: see <a href="Sindx_Eu.html#Euler">Euler numbers</a>
numbers, Eulerian: see <a href="Sindx_Eu.html#EulerianN">Euler numbers</a>
numbers, feral: see <a href="Sindx_Wi.html#wild">wild numbers</a>
numbers, Gaussian, see <a href="Sindx_Ga.html#gaussians">Gaussian integers</a>
numbers, octal: see <a href="Sindx_O.html#octal">octal numbers</a>
numbers, perfect: A000396*, A002827* (unitary), A007539 (n-fold)
numbers, tri-perfect: A005820
numbers, triperfect: A005820
numbers, triply perfect: A005820
numbers, wild: see <a href="Sindx_Wi.html#wild">wild numbers</a>
numeri idonei: see <a href="Sindx_Eu.html#idoneal">Index entries for sequences related to Euler's idoneal numbers</a>
numerus idoneus: see <a href="Sindx_Eu.html#idoneal">Index entries for sequences related to Euler's idoneal numbers</a>
Nynorsk: A028292
Nynorsk: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
n^(n+1): A007778
n^(n-1): A000169*
n^(n-2): A000272*
n^(n-3): A007830
n^2 == n mod K, <a NAME="n2n1modK">sequences related to (start):</a>
n^2 == n mod K: K=1 or 2: A001477,  K=3: A032766, K=4: A042948, K=5: A008851, K=6: A032766, K=7: A047274, K=8: A047393, K=9: A090570, K=10: A008851, K=11: A112651, K=12: A112652, K=13: A112653, K=14: A047274, K=15: A151972, K=16: A151977, K=17: A151978, K=19: A151979, K=20: A151980, K=24: A151973, K=30: A151975, K=32: A151983, K=48: A151981, K=64: A151984
n^2 == n mod K| <a NAME="n2n1modK_end">sequences related to (start):</a>
n^2-n+41 is prime: A002837
n^n: A000312*, A014566
n^n^...^n, number of distinct values taken by: A002845, A003018, A003019
n_3 configurations: see <a href="Sindx_Con.html#configurations">configurations (combinatorial or geometrical)</a>
n_n: A122618
O DIVIDER
O'Nan group: A003919, A008625
obtaining numbers from other numbers and the operations of addition, subtraction, etc: see under <a href="Sindx_Fo.html#4x4">four 4's problem</a>
octagonal numbers: A000567*
octahedral numbers: A005900*
octahedron, truncated: see <a href="Sindx_Tri.html#TRUNC">truncated octahedron</a>
octahedron: A005899
octal numbers, <a NAME="octal">sequences related to (start):</a>
octal numbers, not: A057104
octal numbers: A007094
octal numbers| <a NAME="octal_end">sequences related to (start):</a>
octupi: A029767*
odd numbers , <a NAME="odd_numbers">sequences related to (start):</a>
odd numbers n such that 2^k + n is composite for all k: see A076336
odd numbers, fake: A080591
odd numbers: A005408*
odd numbers: see also A000700, A000069, A007697, A006046, A007455, A007482, A000593, A007483, A006945, A001033, A002309, A006285, A002594, A006038
odd numbers|, <a NAME="odd_numbers_end">sequences related to (start):</a>
odd unimodular lattices, see: <a href="Sindx_La.html#Lattices">lattices, unimodular</a>
odious numbers: A000069*
omega(n), number of distinct primes dividing n: A001221
Omega(n), total number of primes dividing n: A001222
one local maximum, arrays with: A007846, A000079, A087518, A087783*, A087923-A087932
one odd, two even, etc.: A001614
one puddle: see one local maximum
ones-counting sequence: A000120
open problems: see also <a href="Sindx_U.html#numthy">unsolved problems in number theory (selected)</a>
open problems: try searching in the OEIS for the following words: conjecture, apparently, appears, seems, probably, etc.
operational recurrences: A001577*
Opmanis's nice base-dependent sequence: A177834
optimal rulers: see <a href="Sindx_Per.html#perul">perfect rulers</a>
OR(x,y): A003986*
OR: A007460, A006583
orchard problem: A003035*, A006065, A008997
order or orders, <a NAME="ORDER">sequences related to (start):</a>
order, binary: A029837
order, multiplicative order of 2 mod n: A002326
order, ord(x,y): the multiplicative order of x mod y, see entries under: <a href="Sindx_Mu.html#multiplicative_order">multiplicative order</a>
order: see also under <a href="Sindx_Mu.html#multiplicative_order">multiplicative order</a>
ordered factorizations: A074206*, A002033
ordered partitions: see also under <a href="Sindx_Par.html#part">partitions</a>
orders, total: see <a href="Sindx_To.html#total_orders">total orders</a>
orders, weak: A000790
orders: A000670, A004123, A004122, A004121
orders: see also <a href="Sindx_He.html#hierarchies">hierarchies</a>
orders| <a NAME="ORDER_end">sequences related to (start):</a>
ordinals: A005348
Ore numbers: A001599*, A001600
orthogonal arrays, <a NAME="OAs">sequences related to (start):</a>
orthogonal arrays, number of: A039931*, A039927*, A048885*
orthogonal arrays, see also: A008286, A039930, A048164, A048638, A048893, A049082, A049083
orthogonal arrays| <a NAME="OAs_end">sequences related to (start):</a>
orthogonal groups: A003053*, A001051
out-points: A003025, A003026
Pac DIVIDER
p-adic square roots in PARI: A051276, A051277
p-adic valuations: A001511, A007949, A051064, A055457
packing squares: A005842
Packings:: A001224, A005842, A003012, A004021
Padovan sequence: A000931*
Pair-coverings:: A006185, A006186, A006187
pairs of relatively prime numbers, <a NAME="pairs_of_relatively_prime_numbers">sequences related to (start):</a>
pairs of relatively prime numbers: A018805*, A100449
pairs of relatively prime numbers| <a NAME="pairs_of_relatively_prime_numbers_end">sequences related to (start):</a>
palindromes , <a NAME="palindromes">sequences related to (start):</a>
palindromes,  A002113*, A061917
palindromes, "pi" for: A136687, A137180
palindromes, characteristic function of: A136522
palindromes, in base 2: A006995*, A062014, A062019
palindromes, in bases 10 and n: (1): A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969,
palindromes, in bases 10 and n: (2): A029970, A029731, A097855, A099165
palindromes, in bases 2 through 10: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113
palindromes, intrinsic: A060873-A060879, A060947-A060949
palindromes, multiples of n which give: A062279, A061674, A062293, A061797, A050782, A050810
palindromes, populations of: A050250, A050251, A050684, A050685
palindromes, see also (1): A007500, A002778, A007633, A007573, A002780, A006995, A007632, A003098, A007616, A003166, A002779, A002069
palindromes, see also (2): A002781, A006960
palindromic primes: see <a href="Sindx_Pri.html#primes">primes, palindromic</a>
palindromic squares: A029984 for base 3, A029986 for base 4, A029988 for  base  5,  A029990  for base 6, A029992 for base 7, A029805 for base 8, A029994  for  base  9, A002778 for base 10, A029996 for base 11, A029733 for base 16, A118651 for base 17.
palindromic squares: see also A016106, A028818, A059744, A059745
palindromic, not: non-palindromic numbers: A033868, A016038, A047811, A050813
palindromic|, <a NAME="palindromes_end">sequences related to (start):</a>
panarithmic numbers: A005153*
pancake numbers: A000124*
paper-folding sequences: see <a href="Sindx_Fo.html#fold">folding a piece of paper</a>
Par DIVIDER
para-Fibonacci sequences, <a NAME="para_Fibonacci">sequences related to (start):</a>
para-Fibonacci sequences: A019586*, A035612*
para-Fibonacci sequences| <a NAME="para_Fibonacci_end">sequences related to (start):</a>
paradoxical sequences, <a NAME="paradox">sequences related to (start):</a>
paradoxical sequences: A053169*, A091967, A031135, A037181
paradoxical sequences: see also <a href="Sindx_Di.html#diagonal_sequences">diagonal sequences</a>
paradoxical sequences| <a NAME="paradox_end">sequences related to (start):</a>
parasitic numbers: see <a href="Sindx_Tra.html#transposable_numbers">transposable numbers</a>
parentheses, ways to arrange , <a NAME="parens">sequences related to (start):</a>
parentheses, ways to arrange: (1) A000081* A000108* A001003* A001190* A001699* A047929 A054026 A057546 A061855 A071153 A075729 A078623
parentheses, ways to arrange: (2) A079216 A079217 A000311 A001147 A002845 A003006 A003007 A003008 A003018 A003019
parentheses, ways to arrange: see also <a href="Sindx_Ca.html#Catalan">Catalan numbers</a>
parentheses, ways to arrange|, <a NAME="parens_end">sequences related to (start):</a>
parenthesized in 2 ways: A006895
PARI , <a NAME="PARI">sequences related to (start):</a>
PARI code for printing a square array or table by antidiagonals: A025581*, A002262*, A004736*, A002260*, A004070*
PARI code for printing a triangle by rows: A003056*, A002024*, A003057*, A055086*, A073188*, A000194*
PARI code for sequences obtained by concatenating strings: A005713*
PARI code for sequences obtained by repeated substitutions: A005614*
PARI code for set of digits of n in base k: A000695*
PARI: see also <a href="Sindx_Di.html#dirich">Dirichlet series</a>
PARI:|, <a NAME="PARI_end">sequences related to (start):</a>
parity sequence: A010060
partially ordered sets: see <a href="Sindx_Pos.html#posets">posets</a>
partially ordered sets: see also <a href="Sindx_La.html#Lattices">Lattices</a>
partition functions for lattices, <a NAME="partition_functions">sequences related to (start):</a>
partition functions for lattices: A002890, A002891, A001393, A002892, A001407, A001406
partition functions for lattices| <a NAME="partition_functions_end">sequences related to (start):</a>
partitions , <a NAME="part">sequences related to (start):</a>
partitions, A000041*
Partitions, A002300, A007209, A002099, A001144, A002098, A000065, A002622, A002040, A007312, A002039, A002164, A006628
partitions, average number of parts: see A006128
partitions, binary: A000123*, A018819
partitions, graphical: A000569*, A004250*, A004251*, A029889*, A007721* (connected graphs)
partitions, graphical: see also <a href="Sindx_Gra.html#graph_part">graphical partitions</a>
partitions, graphical: see also A007722, A029890, A029891, A029892, A029893, A029894, A029895
partitions, into distinct parts: "partitions of n into distinct parts >= k" and "partitions of n into distinct parts, the least being k-1" come in pairs of closeley related sequences: A025147, A096765 (k=2); A025148, A096749 (k=3); A025149, A026824 (k=4); A025150, A026825 (k=5); A025151, A026826 (k=6); A025152, A026827 (k=7); A025153, A026828 (k=8); A025154, A026829 (k=9); A025155, A026830 (k=10); A096740, A026831 (k=11).
partitions, into distinct parts: A000009*, A000700 (distinct odd parts)
partitions, into distinct primes: A000586*
partitions, into even number of parts: A027187
partitions, into Fibonacci numbers: see <a href="Sindx_Fi.html#Fibonacci">Fibonacci numbers, number of ways to write n as a sum of</a>
Partitions, into non-integral powers, A000135, A000148, A000158, A000160, A000234, A000263, A000298, A000327, A000333, A000339, A000345, A000347, A000397
partitions, into odd number of parts: A027193
partitions, into odd parts: A000009
Partitions, into pairs, A006199, A006198, A006200, A090806
partitions, into parts 5k+-1: A003114*
partitions, into parts 5k+-2: A003106*
Partitions, into parts of m kinds, A000070, A000097, A000098, A000710, A000712, A000713, A000714, A000715, A000711, A000716
Partitions, into powers, A003108, A005706, A005705, A005704, A002572
Partitions, into prime parts, A000586, A007359, A002100, A007360, A000607*, A002095, A000726
partitions, into primes: A000607*, A000586 (distinct primes)
partitions, into relatively prime parts: A051424*
partitions, into triangular numbers: A007294
partitions, m-ary: A000123, A018819, A005704, A005705, A005706
Partitions, maximal, A002569
Partitions, mixed, A002096
Partitions, multi-dimensional, A000334, A000390, A000416, A000427, A002721
Partitions, multi-line, A003292, A000990, A000991, A002799, A001452
partitions, non-squashing: A000123, A018819, A088567, A088575, A088585, A089300, A089292
partitions, number of parts in all: A006128
partitions, numbers n such that P(k*n) is prime, where P(n) is the number of partitions of n: A046063, A114165, A111389, A111045, A114166, A111036, A114167, A114168, A114169, A114170, A113499, A115214
partitions, odd: A000009
partitions, of a polygon: A002058, A002059, A002060
partitions, of a polygon: see also <a href="Sindx_Di.html#dissections">dissections</a>
partitions, of n into 4 squares: A002635*
partitions, of n into 4th powers: A046042*
Partitions, of points on a circle, A001005
Partitions, of unity, A002966, A006585
Partitions, order-consecutive, A007052
partitions, partition numbers, prime: A046063, A114165, A111389, A111045, A114166, A111036, A114167, A114168, A114169, A114170, A114171.
partitions, perfect: A002033
partitions, planar: A000219*, A001522, A001523, A001524, A089300, A089299, A089292
Partitions, planar:: A000784, A005987, A000786, A003293, A000785, A005986, A005157, A006366, A002659, A002660, A002791, A002800
partitions, protruded: A005403, A005404, A005405, A005406, A005407, A005116
Partitions, refinements of, A002846
partitions, restricted (1):: A002637, A002635, A002471, A002636, A007690, A001156, A007294, A003105, A003106, A003114
partitions, restricted (2):: A002865, A001399, A006950, A001972, A007279, A001971, A001400, A001401, A001402, A002573
partitions, restricted (3):: A002574, A002843, A005895, A006827, A007511, A005896, A001976, A001975, A002219, A001978
partitions, restricted (4):: A006477, A001977, A001980, A001979, A002220, A001982, A001981, A002221, A002222
Partitions, rotatable, A002722, A002723
partitions, solid (1): A000293* A000294 A002835 A002836 A005980 A037452 A080207 A002043 A002936 A002974 A002044 A002045
partitions, solid (2): A082535
partitions, square: A008763, A089299
partitions, total number of parts: A006128
partitions, total: A000311* (labeled), A000669* (labeled)
partitions, total: see also <a href="Sindx_To.html#total_orders">total orders</a>
partitions, triangle of number of partitions of n in which greatest part is k: A008284*
partitions, triangle of number of partitions of n into k parts: A008284*
partitions, wide: A070830
partitions, | notes on (00): <a NAME="partN">sequences related to (start)</a> (Courtesy of Bob Proctor)
partitions, | notes on (01): When considering partitions of n (initially labeled) objects, we may:
partitions, | notes on (02): (1)  Allow the "blocks" to be empty - so more generally refer to "pieces".
partitions, | notes on (03): (2)  Order the pieces - so consider "sequences" of pieces instead of "collections".
partitions, | notes on (04): (3)  Order the elements within the pieces - so consider "lists" instead of "sets".
partitions, | notes on (05): (4)  Erase the labels on the objects - this produces partitions or compositions of integers.
partitions, | notes on (06): With these considerations in mind, we define 6 rows of a table.  The columns are defined by formulating various conditions on how many objects can be in the pieces.  The six rows are:
partitions, | notes on (07): Row A:  Sequences of lists of labeled elements (e.g. books on shelves)
partitions, | notes on (08): Row B:  Sequences of sets of labeled elements (i.e. ordered partitions)
partitions, | notes on (08): Row C:  Sequences of multisets on one color of marble (i.e. compositions)
partitions, | notes on (09): Row D:  Collections of lists of labeled elements (e.g. stacks of books)
partitions, | notes on (10): Row E:  Collections of sets of labeled elements (i.e. set partitions)
partitions, | notes on (11): Row F:  Collections of multisets on one color of marble (i.e. integer partitions)
partitions, | notes on (12): In the columns, m is the number of marbles and b is the number of bins.
partitions, | notes on (13): Column 1:  m  elements.  Each block has at least 1 element (and number of blocks varies)
partitions, | notes on (14): Column 2:  m  elements.  Each block has at least 2 elements (and number of blocks varies)
partitions, | notes on (15): Column 3:  m  elements.  Each block has 1 or 2 elements (and number of blocks varies)
partitions, | notes on (16): Column 4:  b blocks.  Each block has exactly 2 elements (and there are 2b elements)
partitions, | notes on (17): Column 5:  b pieces.  Each piece has 0 or 1 elements (and number of elements varies)
partitions, | notes on (18): Column 6:  b pieces.  Each piece has 0, 1, or 2 elements (and number of elements varies)
partitions, | notes on (19): Column 7:  b blocks.  Each block has 1 or 2 elements (and number of elements varies)
partitions, | notes on (20): OEIS # Col 1   Col 2   Col 3   Col 4   Col 4   Col 6   Col 7
partitions, | notes on (21): Row A A002866 A052554 A005442 A010050 A000522 A082765 A099022
partitions, | notes on (22): Row B A000670 A032032 A080599 A000680 A000522 A003011 A105749
partitions, | notes on (23): Row C A011782 A000045 A000045 A000012 A000079 A000244 A000079
partitions, | notes on (24): Row D A000262 A052845 A047974 A001813 A000027 A105747 A001517
partitions, | notes on (25): Row E A000110 A000296 A000085 A001147 A000027 A105748 A001515
partitions, | notes on (26): Row F A000041 A002865 A008619 A000012 A000027 A000217 A000027
partitions, | notes on (27): Reference: R. A. Proctor, <a href= "http://arxiv.org/abs/math.CO/0606404"> Let's Expand Rota's Twelvefold Way for Counting Partitions! </a> arXiv math.CO.0606404.
partitions, | notes on (28)| <a NAME="partN_end">sequences related to (start)</a> (Courtesy of Bob Proctor)
partitions: see also <a href="Sindx_Pro.html#1mxtok">expansions of product_{k >= 1} (1-x^k)^m</a>
partitions: see also under <a href="Sindx_Com.html#comp">compositions</a>
partitions|, <a NAME="part_end">sequences related to (start):</a>
Pas DIVIDER
Pascal triangle , <a NAME="Pascal">triangles related to (start):</a>
Pascal triangle, triangles and arrays related to:  A007318* (main entry), A008949, A034851, A047999, A050186, A052509, A052511, A052553, A054123, A054124
Pascal triangle, triangles and arrays related to: (cont.) A055372-A055376, A055883, A055894
Pascal triangle: A006047, A007188, A006921, A006046, A001317, A006048, A006943, A006940
Pascal's rhombus: A059317*, A059318-A059320, A006190
Pascal's square: A059674
Pascal| triangle , <a NAME="Pascal_end">triangles related to (start):</a>
Paths in plane:: A006858, A006859
paths in square grid: A000984
Paths through arrays:: A006675, A006676
patience: A051921
Patterns:: A002619, A002618, A007574
pay-phones , <a NAME="payphones">triangles related to (start):</a>
pay-phones: A095236*, A095237, A095239, A095240, A095698, A095912, A095923
pay-phones|, <a NAME="payphones_end">triangles related to (start):</a>
Pea DIVIDER
Peaks:: A000487
Peanuts cartoon sequences: A006345, A006346
pedal triangles: A102536
peeling rinds: A005675
Pell numbers, generalized: see <a href="Sindx_Fi.html#Fibonacci">Fibonacci numbers, generalized</a>
Pell numbers: A000129*
Pell numbers: see also A002349, A006704, A006702, A002203, A006705, A006703, A001932, A003153, A001571, A001582, A002350, A001570
Pell's equation: see Pellian equation.
Pellian equation , <a NAME="Pellian">sequences related to (start):</a>
Pellian equation x^2 - D*y^2 = 1: smallest solution (x,y) as D runs through primes: (A081233, A081234), (A081231, A082394), (A081232, A082393)
Pellian equation x^2 - D*y^2 = 1: smallest solution (x,y): (A002450, A002349)
Pellian equation: <a href="http://members.aol.com/_ht_a/jpr2718/pell.pdf">John Robertson's web page on solving Pell's equation</a>
Pellian equation:: A006704, A006702, A006705, A006703, A003153, A001571, A001570
Pellian equation|, <a NAME="Pellian_end">sequences related to (start):</a>
Pennies:: A005575, A005577, A005576, A001524
pentagonal numbers: A000326*, A005891* (centered), A001318
pentagonal numbers: see also A002637
pentagonal pyramidal numbers: A002411
Pentagonal Theorem: A010815
Pentanacci numbers:: A001591, A000322
Per DIVIDER
percolation series  , <a NAME="percolation">sequences related to (start):</a>
percolation series (1):: A006462, A006731, A006808, A006727, A006461, A006836, A006732, A006734, A006728, A006730
percolation series (2):: A006462, A006731, A006808, A006727, A006461, A006836, A006732, A006734, A006728, A006730
percolation series (3):: A006742, A006738, A006733, A006729, A006837, A006803, A006807, A006804, A006739, A006835
percolation series (4):: A006813, A006809, A006735, A006810, A006838, A006805, A006811, A006740, A006736, A006806, A006812, A006741, A006737
percolation series|, <a NAME="percolation_end">sequences related to (start):</a>
perfect lattices: see <a href="Sindx_La.html#Lattices">lattices, perfect</a>
Perfect matchings, A005271
perfect numbers: A000396*, A002827* (unitary), A007539 (n-fold)
perfect partitions: A002033*
perfect powers: A001597*, A007916, A023055, A023057
perfect rulers , <a NAME="perul">sequences related to (start):</a>
perfect rulers: A004137, A104305-A104310, A103294-A103301
perfect rulers: see also <a href="Sindx_Go.html#Golomb">Golomb rulers</a>
perfect rulers|, <a NAME="perul_end">sequences related to (start):</a>
perfect years: A061013
Perfect:: A002033, A004026, A002839, A007346, A007422, A007357, A005820
period of continued fraction for sqrt(n) , <a NAME="period_of_continued_fraction_for_sqrt">sequences related to (start):</a>
period of continued fraction for sqrt(n), length of: A003285*, A097853
period of continued fraction for sqrt(n), see: <a href="Sindx_Sq.html#SQRT2">sqrt(n), length of period of continued fraction for</a>
period of continued fraction for sqrt(n)| <a NAME="period_of_continued_fraction_for_sqrt_end">sequences related to (start):</a>
period of reciprocal of n: see <a href="Sindx_1.html#1overn">1/n</a>
period of reciprocal of nth prime: see <a href="Sindx_1.html#1overn">1/p</a>
Periodic differences:: A002081
Periodic sequences:: A000035, A000034
periodic table: A007656*, A058317, A058318
Periods:: A003285, A006447, A006883, A002329
Permanents:: A003113, A000794, A005326, A003112, A000804, A000805
permutation groups: see <a href="Sindx_Gre.html#groups">groups, permutation</a>
permutations , <a NAME="perm">sequences related to (start):</a>
Permutations, alternating: A000111*, A007289, A007286, A005981, A006873, A005982, A005983
permutations, asymmetric: A000899
Permutations, Baxter, A001183, A001181, A001185
permutations, bitriangular: A006230
Permutations, by cycles, A005225, A005772
Permutations, by descents, A002538, A002539
permutations, by distance: A002524, A002525, A002526, A002527, A002528, A002529, A000045, A072856, A154654, A154655, A154656, A154657, A154658, A154659
Permutations, by inversions, A001892, A000707, A001893, A001894, A005287, A005283, A005284, A005285
Permutations, by length of runs, A001251, A001252, A001253, A000303, A000402, A000434, A000456, A000467, A000517
Permutations, by number of peaks, A000487
Permutations, by number of runs, A000352, A000363, A000486, A000506, A000507
Permutations, by number of sequences, A001759, A001760
permutations, by numbers of consecutive ascending and descending pairs, triangles of: A001100, A086856, A010028
permutations, by numbers of consecutive ascending and descending pairs: A002464, A086852, A086853, A086854, A086855, A001266, A000130, A000349, A001267, A001268
Permutations, by order, A001472, A005388, A001471, A001470, A001189, A001473
Permutations, by rises, A000130, A000239, A001277, A000274, A000544, A001279, A000313, A000349, A001260, A001261, A001266, A001267, A001278, A001268, A001280, A001282
Permutations, by spread, A004206, A004205, A004204
Permutations, by subsequences, A002628, A005802, A002629, A002630, A003316, A001454, A001455, A001456, A001457, A001458
permutations, connected: A003319
Permutations, cycles in, A006694
Permutations, descending subsequences of, A006219, A006220
Permutations, discordant, A002634, A000183, A002633, A000270, A000380, A000388, A000561, A000440, A000562, A000470, A000563, A000476, A000492, A000564, A000500, A000565
permutations, even: A001710*, A003221, A000704
permutations, graceful: A006967
permutations, indecomposable: A003319
Permutations, inequivalent, A003510
Permutations, inversions in, A000140
Permutations, isolated reformed, A007712
Permutations, key, A003274
permutations, largest order of: A000793*, A002809
Permutations, maximal order of, A000793, A002809
Permutations, menage, A002484
permutations, menage: see also <a href="Sindx_Me.html#menage">menage numbers</a>
Permutations, necklace, A003322
Permutations, odd, A001465
permutations, of n letters: A000142*
permutations, of order 2: A001189*, A001185*
permutations, of order dividing k, for k=2,3,4,5,... (1): A000085 A001470 A001472 A053495 A053496 A053497 A053498 A053499 A053500 A053501
permutations, of order dividing k, for k=2,3,4,5,... (2): A053502 A053503 A053504 A053505 A005388
permutations, of the  positive (or nonnegative) integers  , <a NAME="IntegerPermutation">sequences related to (start):</a>
permutations, of the integers, conjectured: A064389 (This entry needs to be greatly expanded!)
permutations, of the integers, each paired with its inverse: ( 1) A003188-A006068 A004484-A064206 A004485-A064207 A004486-A064208 A004487-A064211 A029654-A064360
permutations, of the integers, each paired with its inverse: ( 2) A064413-A064664 A032447-A064275 A035312-A035358 A035506-A064357 A035513-A064274 A047708-A048850
permutations, of the integers, each paired with its inverse: ( 3) A048672-A064273 A048673-A064216 A048679-A048680 A052330-A064358 A059900-A059884
permutations, of the integers, each paired with its inverse: ( 4) A052331-A064359 A054238-A054239 A054424-A054426 A054427-A054428 A064706-A064707 A034175-A064928
permutations, of the integers, each paired with its inverse: ( 5) A064929-A064930 A057027-A064578 A054082-A064579 A065164-A065168 A065165-A065169 A065166-A065170
permutations, of the integers, each paired with its inverse: ( 6) A065171-A065172 A065174-A065175 A065181-A065182 A065183-A065184 A065186-A065187 A065188-A065189
permutations, of the integers, each paired with its inverse: ( 7) A006368-A006369 A057114-A057115 A054084-A064786 A053212-A064787
permutations, of the integers, each paired with its inverse: ( 8) A060736-A064788 A054068-A054069 A057028-A064789
permutations, of the integers, each paired with its inverse: ( 9) A060734-A064790 A064537-A064791 A064736-A064745 A065249-A065250 A065259-A065260
permutations, of the integers, each paired with its inverse: (10) A065263-A065264 A065265-A065266 A065269-A065270 A065271-A065272 A065275-A065276 A065277-A065278
permutations, of the integers, each paired with its inverse: (11) A065281-A065282 A065283-A065284 A065287-A065288 A065289-A065290 A065253-A065254 A065306-A065307
permutations, of the integers, each paired with its inverse: (12) A004515-A065256 A065257-A065258 A064417-A064956 A064418-A064958 A064419-A064959 A036552-A065037
permutations, of the integers, each paired with its inverse: (13) A065649-A065650 A065627-A065628 A065629-A065630 A065631-A065632 A065633-A065634 A065635-A065636
permutations, of the integers, each paired with its inverse: (14) A065637-A065638 A065639-A065640 A065660-A065661 A065662-A065663 A065664-A065665 A065666-A065667
permutations, of the integers, each paired with its inverse: (15) A065668-A065669 A065670-A065671 A065672-A065673 A065561-A065578 A065562-A065579 A065934-A065935
permutations, of the integers, each paired with its inverse: (16) A066248-A066249 A066250-A066251 A067587-A066884 A068225-A068226 A072061-A072062
permutations, of the integers, each paired with its inverse: (17) A072732-A072733 A072734-A072735 A072793-A072794 A074305-A074306 A074307-A074308
permutations, of the integers, each paired with its inverse: (18) A051261-A077226 A084469-A084470 A084453-A084454 A084455-A084466 A084459-A084460
permutations, of the integers, each paired with its inverse: (19) A084461-A084462 A084489-A084490 A084491-A084492 A084493-A084494 A084495-A084496
permutations, of the integers, each paired with its inverse: (20) A084497-A084498 A084499-A084530 A098003-A098485
permutations, of the integers, induced by Catalan rerankings, each paired with its inverse: (1) A071651-A071652, A071653-A071654, A072634-A072635, A072636-A072637, A072656-A072657, A072658-A072659
permutations, of the integers, induced by Catalan rerankings, each paired with its inverse: (2) A072646-A072647, A072787-A072788, A072764-A072765, A072766-A072767, A075161-A075162, A075168-A075169
permutations, of the integers, self-inverse: (01): A000027, A002251, A003100, A004442, A004488, A011262, A014681, A018220, A018221, A018222,
permutations, of the integers, self-inverse: (02): A019444, A020703, A026239, A026250, A026255, A026262, A038722, A048647, A054429, A054430,
permutations, of the integers, self-inverse: (03): A056011, A056019, A056023, A056539, A057163, A057164, A057300, A057508, A059893, A059894,
permutations, of the integers, self-inverse: (04): A060125, A061579, A061898, A064429, A064505, A064614, A065190, A065652, A069766, A069769,
permutations, of the integers, self-inverse: (05): A069771, A069772, A069787, A069888, A069889, A071065, A072026, A072027, A072028, A072029,
permutations, of the integers, self-inverse: (06): A072356, A072796, A072797, A072798, A072799, A073280, A073281, A073675, A073842, A074066,
permutations, of the integers, self-inverse: (07): A074067, A074068, A080412, A081241, A083569, A084483, A085240, A086572, A086962, A086963,
permutations, of the integers, self-inverse: (08): A086964, A088337, A094510, A094681, A100527, A100830, A106649, A108590, A108591, A108592,
permutations, of the integers, self-inverse: (09): A108593, A108599, A108971, A109233, A109236, A109239, A109250, A109261, A110119, A114538,
permutations, of the integers, self-inverse: (10): A114578, A114579, A114882, A115094, A115182, A115303, A115304, A115305, A115306, A115307,
permutations, of the integers, self-inverse: (11): A115308, A115309, A117120, A117303, A118012, A120229, A120230, A120913, A122111, A125566,
permutations, of the integers, self-inverse: (12): A125979, A125980, A126009, A126290, A126320, A127387, A127388, A129594, A129608, A130339,
permutations, of the integers, self-inverse: (13): A130340, A130373, A130374, A130918, A130981, A130982, A131173, A132340, A132664, A132665,
permutations, of the integers, self-inverse: (14): A132666, A132667, A132668, A132669, A132670, A132671, A132672, A132673, A132674, A135044,
permutations, of the integers, self-inverse: (15): A137662, A137805, A138236, A153150, A154125, A154126, A159253, A159586, A159587, A159588,
permutations, of the integers, self-inverse: (16): A160652, A162750, A162853, A163327, A163332, A163333, A163807, A164088, A165199, A166166,
permutations, of the integers, self-inverse: (17): A166404
permutations, of the integers, signature-permutations induced by Catalan automorphisms, <a NAME="IntegerPermutationCatAuto">sequences related to (start):</a>
permutations, of the integers, signature-permutations of Catalan automorphisms, (01) A057163 A057164 A057508 A069766 A069769 A069770 A069771 A069772 A069787 A069888 A069889
permutations, of the integers, signature-permutations of Catalan automorphisms, (02) A072796 A072797 A073280 A073281 A082313 A082314
permutations, of the integers, signature-permutations of Catalan automorphisms, (03) A057117-A057118 A057161-A057162 A057501-A057502 A057503-A057504 A057505-A057506 A057509-A057510
permutations, of the integers, signature-permutations of Catalan automorphisms, (04) A057511-A057512 A069767-A069768 A069773-A069774 A069775-A069776 A071661-A071662 A071663-A071664
permutations, of the integers, signature-permutations of Catalan automorphisms, (05) A071665-A071666 A071667-A071668 A071669-A071670 A071655-A071656 A071657-A071658 A071659-A071660
permutations, of the integers, signature-permutations of Catalan automorphisms, (06) A072090-A072091 A072092-A072093 A072094-A072095 A072621-A072622 A072088-A072089 A073269-A073270
permutations, of the integers, signature-permutations of Catalan automorphisms, (07) A073282-A073283 A073284-A073285 A073286-A073287 A073288-A073289 A073194-A073195 A073196-A073197
permutations, of the integers, signature-permutations of Catalan automorphisms, (08) A073198-A073199 A073205-A073206 A073207-A073208 A073209-A073210 A073290-A073291 A073292-A073293
permutations, of the integers, signature-permutations of Catalan automorphisms, (09) A073294-A073295 A073296-A073297 A073298-A073299 A074679-A074680 A074681-A074682 A074683-A074684
permutations, of the integers, signature-permutations of Catalan automorphisms, (10) A074685-A074686 A074687-A074688 A074689-A074690 A082315-A082316 A082317-A082318 A082319-A082320
permutations, of the integers, signature-permutations of Catalan automorphisms, (11) A082321-A082322 A082323-A082324 A082325-A082326 A082331-A082332 A082333-A082334 A082335-A082336
permutations, of the integers, signature-permutations of Catalan automorphisms, (12) A082337-A082338 A082339-A082340 A082341-A082342 A082345-A082346 A082347-A082348 A082349-A082350
permutations, of the integers, signature-permutations of Catalan automorphisms, (13) A082351-A082352 A082353-A082354 A082355-A082356 A082357-A082358 A082359-A082360
permutations, of the integers, signature-permutations of Catalan automorphisms| <a NAME="IntegerPermutationCatAuto_end">sequences related to (start):</a>
permutations, of the integers, tables of: A003987 A018219 A054081 A065167 A073200
permutations, of the integers: see also A066252, A066253, A066254, A066255
permutations, of the integers| <a NAME="IntegerPermutation_end">sequences related to (start):</a>
permutations, permutation arrays:: A005677, A006841
permutations, quasi-alternating: A000708, A001758
Permutations, restricted, A003407, A006595, A003011, A002777, A000382, A007016, A000496
permutations, self-conjugate: A000085
permutations, self-inverse: A000085*
permutations, special: A003109, A003110, A003111
permutations, square: A003483
permutations, symmetric: A000900, A000901, A000902
permutations, unreformed: A007711
permutations, with a square root: A003483
permutations, with fixed points: A002467*
permutations, with no fixed points: A000166*
Permutations, with no hits, A003471, A000316, A000459
Permutations, with strong fixed points, A006932
permutations, zero-entropy: A006948
permutations|, <a NAME="perm_end">sequences related to (start):</a>
Perrin sequence: A001608*
persistence  , <a NAME="persistence">sequences related to (start):</a>
persistence (additive): A006050*, A031286* and A045646*
persistence (multiplicative): A003001* and A031346*
persistence: see also <a href="Sindx_Pow.html#powertrain">powertrain</a>
persistence| , <a NAME="persistence_end">sequences related to (start):</a>
Ph DIVIDER
phi : see <a href="Sindx_Go.html#GOLDEN">golden ratio phi</a>
phi(n) (A000010): see <a href="Sindx_To.html#totient">totient function phi(n)</a>
Phi(n): A005728*
phi, Phi: A000108, A001006, A007477, A025262, A025268
pi(x), <a NAME="PIX">sequences related to (start):</a>
pi(x), number of primes <= x: A000720*
pi(x), pi(10^n): A006880
pi(x)| <a NAME="PIX_end">sequences related to (start):</a>
Pi,  <a NAME="Pi314">sequences related to (start):</a>
Pi, continued cotangent for: A002667*
Pi, continued fraction for: A001203*
Pi, continued fraction for: records: A007541, A033089, A033090
Pi, convergents to: A002485*/A002486*
Pi, decimal expansion of: A000796*
Pi, see also (1): A007514 A006941 A000796* A001355 A001203 A007523 A005042 A002667 A006524 A002161 A007541 A001467
Pi, see also (2): A001466 A002388 A006934 A005149 A005148 A068089 A068079 A068028 A049534 A101815 A101816
Pi, strings of digits in: ( 1) A014976, A050201, A050202, A083598, A083599, A083600, A083601
Pi, strings of digits in: ( 2) A053745, A050208, A050209, A083602, A083603, A083604, A083605
Pi, strings of digits in: ( 3) A053746, A050215, A083606, A083607, A083608, A083609
Pi, strings of digits in: ( 4) A053747, A050222, A083610, A083611, A083612, A083613, A083614
Pi, strings of digits in: ( 5) A053748, A050230, A083615, A083616, A083617, A083618, A083619
Pi, strings of digits in: ( 6) A053749, A050238, A083620, A083621, A083622, A083623, A083624
Pi, strings of digits in: ( 7) A053750, A050245, A083625, A083626, A083627, A083628, A083629, A083630
Pi, strings of digits in: ( 8) A053751, A050254, A083631, A083632, A083633, A083634, A083635, A083636
Pi, strings of digits in: ( 9) A053752, A050263, A083637, A083638, A083639, A083640, A083641
Pi, strings of digits in: (10) A053753, A050272, A083642, A083643, A083644, A083645, A083646
Pi,| <a NAME="Pi314_end">sequences related to (start):</a>
piano keyboard: A059620*, A079731, A060106, A060107, A081031, A081032
picture-perfect numbers: A069942
pieces: see also under <a href="Sindx_Par.html#part">partitions</a>
Pierce expansions: A006275, A006276, A006283, A006284
Pierpont primes: see <a href="Sindx_Pri.html#primes">primes, Pierpont</a>
Pisano numbers: see Pisano periods
Pisano periods: A001175*
Pisot sequences, <a NAME="Pisot">sequences related to (start):</a>
Pisot sequences, definition: A008776*
Pisot sequences, warning about recurrences for: A010925
Pisot sequences: ( 1) A000051 A000079 A000244 A000302 A000351 A000400 A000420 A001018 A001019 A001519 A004171 A007283
Pisot sequences: ( 2) A007484 A007699 A008776 A009056 A010900 A010901 A010902 A010903 A010904 A010905 A010906 A010907
Pisot sequences: ( 3) A010908 A010909 A010910 A010911 A010912 A010913 A010914 A010915 A010916 A010917 A010919 A010920
Pisot sequences: ( 4) A010922 A010924 A010925 A011557 A014001 A014002 A014003 A014004 A014005 A014006 A014007 A014008
Pisot sequences: ( 5) A018910 A018914 A018920 A019492 A020695 A020696 A020698 A020701 A020702 A020704 A020705 A020706
Pisot sequences: ( 6) A020707 A020708 A020709 A020710 A020711 A020712 A020713 A020714 A020715 A020716 A020717 A020718
Pisot sequences: ( 7) A020719 A020720 A020721 A020722 A020723 A020727 A020728 A020729 A020730 A020732 A020734 A020735
Pisot sequences: ( 8) A020736 A020737 A020739 A020741 A020742 A020743 A020744 A020745 A020746 A020747 A020748 A020749
Pisot sequences: ( 9) A020750 A020751 A020752 A021000 A021001 A021004 A021006 A021008 A021011 A021013 A021014 A048575
Pisot sequences: (10) A048576 A048577 A048578 A048579 A048580 A048581 A048582 A048583 A048584 A048585 A048586 A048587
Pisot sequences: (11) A048588 A048589 A048590 A048591 A048592 A048624 A048625 A048626 A051016 A051017
Pisot sequences| <a NAME="Pisot_end">sequences related to (start):</a>
planar , <a NAME="planar">sequences related to (start):</a>
planar graphs: see <a href="Sindx_Gra.html#graphs">graphs, planar</a>
planar vs plane: some authors make a distinction between "plane", meaning embedded in the plane with a distinguished exterior region, and "planar", meaning embedded in the sphere (with no distinguished region)
planar|, <a NAME="planar_end">sequences related to (start):</a>
Planck's constant: A003676
plots, misleading: see <a href="Sindx_De.html#deceptive">deceptive plots</a>
plus perfect numbers: A005188*
Poi DIVIDER
Poincare , <a NAME="Poincare">sequences related to (start):</a>
Poincare conjecture: A001676*
Poincare series: see <a href="Sindx_Mo.html#Molien">Molien series</a>
Poincare|, <a NAME="Poincare_end">sequences related to (start):</a>
pointed connected graphs: A126100; pointed connected planar graphs: A126201; pointed curves: A074059, A074060; pointed groupoids: A006448, A038015, A038016, A038017; pointed groups: A126103, A126102; pointed polyominoes: A126202; pointed rooted trees: A000107, A000312; pointed trees = rooted trees: (A000081).
pointed objects: pointed algebras: see <a href="Sindx_Gre.html#groupoids">groupoids, pointed</a>;
points on surface of various polyhedra, <a NAME="points_on_surface">sequences related to (start):</a>
points on surface of various polyhedra:: A005893, A005918, A005899, A005897, A005919, A005901, A005914, A005905, A005903, A005911
points on surface of various polyhedra| <a NAME="points_on_surface_end">sequences related to (start):</a>
poker , <a NAME="poker">sequences related to (start):</a>
poker: (1) A002761 A002806 A002834 A002847 A002879 A003480 A007052 A007070 A014353 A014355 A014356 A014357
poker: (2) A014358 A014404 A053080 A053081 A053082 A053083 A053084 A053085 A053086 A057694 A057695 A057796
poker: (3) A057797 A057798 A057799 A057800 A057801 A057802 A057803 A057804 A057805 A057806 A057807 A057808
poker|, <a NAME="poker_end">sequences related to (start):</a>
Pol DIVIDER
Polish: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
politeness: A069283
POLS, see <a href="Sindx_La.html#Latin">Latin squares, mutually orthogonal</a>
Polya's conjecture, <a NAME="Polyaconjecture">sequences related to (start):</a>
Polya's conjecture: A072203*, A028488
Polya's conjecture| <a NAME="Polyaconjecture_end">sequences related to (start):</a>
polyaboloes: A006074*
polyares: A057724, A057725
polycubes, <a NAME="polycubes">sequences related to (start):</a>
polycubes: A000162*
polycubes: see also <a href="Sindx_Pol.html#polyominoes">polyominoes</a>
polycubes| <a NAME="polycubes_end">sequences related to (start):</a>
polyedges: see <a href="Sindx_Pol.html#polyominoes">polyominoes</a>
polyforms, see <a href="Sindx_Pol.html#polyominoes">polyominoes</a>
polygamma function: A006955, A006956
polygonal numbers, <a NAME="polygonal_numbers">sequences related to (start):</a>
polygonal numbers, centered, see <a href="Sindx_Ce.html#CENTRALCUBE">centered polygonal numbers</a>
polygonal numbers: A057145*
polygonal numbers: for n=3..24 (1): A000217, A000290, A000326, A000384, A000566, A000567, A001106, A001107,
polygonal numbers: for n=3..24 (2): A051682, A051624, A051865, A051866, A051867, A051868, A051869, A051870,
polygonal numbers: for n=3..24 (3): A051871, A051872, A051873, A051874, A051875, A051876
polygonal numbers: see also A007419
polygonal numbers| <a NAME="polygonal_numbers_end">sequences related to (start):</a>
polygons  , <a NAME="polygons">sequences related to (start):</a>
polygons (1):: A003401, A001004, A003455, A000940, A000939, A005036, A003456, A006725, A006724, A003450
polygons (2):: A003454, A003452, A005034, A003447, A005768, A005436, A002931, A006781, A005040, A003445
polygons (3):: A007169, A006782, A003442, A005038, A002058, A006743, A006774, A000207, A003453, A003449
polygons (4):: A003441, A001002, A006772, A003448, A005419, A006783, A001409, A002816, A003443, A002059
polygons (5):: A005397, A003451, A003444, A005035, A002293, A005039, A001397, A001396, A002895, A002060
polygons (6):: A007220, A005033, A006773, A005396, A002898, A005037, A002295, A002896, A007221, A002296
polygons (7):: A005398, A006726, A006726, A005770, A002055, A001335, A002899, A005769, A002056, A007160, A005782, A001413, A007222, A001337, A001667
polygons constructible with ruler and compass: A003401*
polygons constructible with ruler and compass: see also A000108 A004169 A004729 A005109 A049013
polygons inscribed in a circle: see also <a href="Sindx_La.html#lacings">lacing a shoe</a>
polygons with all diagonals drawn: see <a href="Sindx_Pol.html#Poonen">Poonen-Rubinstein paper</a>
polygons| <a NAME="polygons_end">sequences related to (start):</a>
polyhedra  , <a NAME="polyhedra">sequences related to (start):</a>
polyhedra (1):: A007026, A002840, A007024, A006868, A006866, A007029, A007021, A002883, A006867, A006869, A000944, A007034, A002856
polyhedra (2):: A007030, A007023, A007022, A000287, A007027, A007025, A007028, A007036, A007031, A007032, A007037, A007035, A007033
polyhedra, allomorphic: A002883
polyhedra, regular: A060296, A053016, A063924, A063925, A063926, A063927, A063722
polyhedra: A000944*, A049337*, A000109* (simplicial)
polyhedra: see also <a href="Sindx_Pol.html#polytopes">polytopes</a>
polyhedra|, <a NAME="polyhedra_end">sequences related to (start):</a>
polyhes: A057712
polyhexes: see also <a href="Sindx_Pol.html#polyominoes">polyominoes (hexagonal)</a>
polyiamonds: A000577*
polyknights: A030444, A030445, A030446, A030447, A030448
polynomials , <a NAME="polynomials">sequences related to (start):</a>
polynomials producing primes: see <a href="Sindx_Pri.html#primes">primes, produced by polynomials</a>
Polynomials, Bell, A001861
polynomials, Bernoulli: see <a href="Sindx_Be.html#BERNOULLIPOLYNOMIALS">Bernoulli polynomials</a>
Polynomials, Bessel, A001518, A001516, A001514, A001880, A001881
polynomials, Boolean: A169912, A169913, A169914
Polynomials, by height, A005409
Polynomials, characteristic, A006135, A006136
Polynomials, Chebyshev, A005583, A005584, A002680, A002700, A001793, A001794, A002697, A007701, A006974, A006975, A006976, A002698
Polynomials, cyclotomic, A007273, A004124
polynomials, cyclotomic, inverse, Phi(1..9): A033999, A049347, A056594, A010891, A010892, A014016, A014017, A014018
polynomials, cyclotomic, inverse, Phi(10..19): A014019, A014020, A014021, A014022, A014023, A014024, A014025, A014026, A014027, A014028
polynomials, cyclotomic, inverse, Phi(100..109): A014111, A014114
polynomials, cyclotomic, inverse, Phi(110..119): A014119, A014123, A014124, A014128
polynomials, cyclotomic, inverse, Phi(120..129): A014129, A014135
polynomials, cyclotomic, inverse, Phi(130..139): A014139, A014141, A014142, A014147
polynomials, cyclotomic, inverse, Phi(140..149): A014149, A014152, A014154
polynomials, cyclotomic, inverse, Phi(150..159): A014159, A014163, A014164, A014165
polynomials, cyclotomic, inverse, Phi(160..169): A014170, A014174, A014177
polynomials, cyclotomic, inverse, Phi(170..179): A014179, A014183, A014184
polynomials, cyclotomic, inverse, Phi(180..189): A014189, A014191, A014194, A014195, A014196
polynomials, cyclotomic, inverse, Phi(190..199): A014199, A014204, A014207
polynomials, cyclotomic, inverse, Phi(20..29): A014029, A014030, A014031, A014032, A014033, A014034, A014035, A014036, A014037, A014038
polynomials, cyclotomic, inverse, Phi(200..209): A014212, A014218
polynomials, cyclotomic, inverse, Phi(210..219): A014219, A014226
polynomials, cyclotomic, inverse, Phi(220..229): A014229, A014230
polynomials, cyclotomic, inverse, Phi(230..239): A014239, A014240, A014247
polynomials, cyclotomic, inverse, Phi(240..249): A014256
polynomials, cyclotomic, inverse, Phi(250..259): A014262, A014264, A014268
polynomials, cyclotomic, inverse, Phi(260..269): A014269, A014275
polynomials, cyclotomic, inverse, Phi(270..279): A014282
polynomials, cyclotomic, inverse, Phi(280..289): A014289, A014294, A014295, A014296
polynomials, cyclotomic, inverse, Phi(290..299): A014299, A014308
polynomials, cyclotomic, inverse, Phi(30..39): A014039, A014040, A014041, A014042, A014043, A014044, A014045, A014047, A014048
polynomials, cyclotomic, inverse, Phi(300..309): A014310, A014317
polynomials, cyclotomic, inverse, Phi(310..319): A014319, A014324, A014328
polynomials, cyclotomic, inverse, Phi(320..329): A014331, A014332, A014338
polynomials, cyclotomic, inverse, Phi(330..339): A014339
polynomials, cyclotomic, inverse, Phi(340..349): A014349, A014350, A014354
polynomials, cyclotomic, inverse, Phi(350..359): A014359, A014366
polynomials, cyclotomic, inverse, Phi(360..369): A014373
polynomials, cyclotomic, inverse, Phi(370..379): A014379, A014380, A014383, A014386
polynomials, cyclotomic, inverse, Phi(380..389): A014389, A014394
polynomials, cyclotomic, inverse, Phi(390..399): A014399, A014400, A014408
polynomials, cyclotomic, inverse, Phi(40..49): A014049, A014051, A014053, A014054, A014055, A014057
polynomials, cyclotomic, inverse, Phi(400..409): A014412, A014415, A014416
polynomials, cyclotomic, inverse, Phi(410..419): A014422, A014427
polynomials, cyclotomic, inverse, Phi(420..429): A014429, A014436, A014438
polynomials, cyclotomic, inverse, Phi(430..439): A014443, A014444, A014446
polynomials, cyclotomic, inverse, Phi(440..449): A014451
polynomials, cyclotomic, inverse, Phi(450..459): A014460, A014464
polynomials, cyclotomic, inverse, Phi(460..469): A014471, A014474, A014478
polynomials, cyclotomic, inverse, Phi(470..479): A014482, A014485
polynomials, cyclotomic, inverse, Phi(480..489): A014490, A014492
polynomials, cyclotomic, inverse, Phi(490..499): A014502, A014503, A014504, A014506
polynomials, cyclotomic, inverse, Phi(50..59): A014059, A014060, A014061, A014063, A014064, A014065, A014066, A014067
polynomials, cyclotomic, inverse, Phi(500..509): A014515
polynomials, cyclotomic, inverse, Phi(510..519): A014519, A014520, A014526, A014527
polynomials, cyclotomic, inverse, Phi(520..529): A014534, A014536
polynomials, cyclotomic, inverse, Phi(530..539): A014541, A014542, A014548
polynomials, cyclotomic, inverse, Phi(60..69): A014069, A014071, A014072, A014074, A014075, A014078
polynomials, cyclotomic, inverse, Phi(70..79): A014079, A014084, A014086, A014087
polynomials, cyclotomic, inverse, Phi(80..89): A014093, A014094, A014096
polynomials, cyclotomic, inverse, Phi(90..99): A014099, A014100, A014102, A014104, A014108
polynomials, cyclotomic, Phi(10..19): A010890
polynomials, cyclotomic, Phi(100..109): A011649, A011650
polynomials, cyclotomic, Phi(110..119): A011651, A011652, A011653, A011654
polynomials, cyclotomic, Phi(120..129): A016328, A016329
polynomials, cyclotomic, Phi(130..139): A016330, A016331, A016332, A016333
polynomials, cyclotomic, Phi(140..149): A016334, A016335, A016336
polynomials, cyclotomic, Phi(150..159): A016337, A016338, A016339
polynomials, cyclotomic, Phi(160..169): A016341, A016342, A016343
polynomials, cyclotomic, Phi(170..179): A016344, A016345, A016346
polynomials, cyclotomic, Phi(180..189): A016347, A016348, A016349, A016350, A016351
polynomials, cyclotomic, Phi(190..199): A016352, A016353, A016354
polynomials, cyclotomic, Phi(20..29): A011632
polynomials, cyclotomic, Phi(200..209): A016355, A016356
polynomials, cyclotomic, Phi(210..219): A016357, A016358
polynomials, cyclotomic, Phi(220..229): A016359, A016360
polynomials, cyclotomic, Phi(230..239): A016361, A016362, A016363
polynomials, cyclotomic, Phi(240..249): A016364
polynomials, cyclotomic, Phi(250..259): A016365, A016366, A016367
polynomials, cyclotomic, Phi(260..269): A016368, A016369
polynomials, cyclotomic, Phi(270..279): A016370
polynomials, cyclotomic, Phi(280..289): A016371, A016372, A016373, A016374
polynomials, cyclotomic, Phi(290..299): A016375, A016376
polynomials, cyclotomic, Phi(30..39): A011633, A011634
polynomials, cyclotomic, Phi(300..309): A016377, A016378
polynomials, cyclotomic, Phi(310..319): A016379, A016380, A016381
polynomials, cyclotomic, Phi(320..329): A016382, A016383, A016384
polynomials, cyclotomic, Phi(330..339): A016385
polynomials, cyclotomic, Phi(340..349): A016386, A016387, A016388
polynomials, cyclotomic, Phi(350..359): A016389, A016390
polynomials, cyclotomic, Phi(360..369): A016391
polynomials, cyclotomic, Phi(370..379): A016392, A016393, A016394, A016395
polynomials, cyclotomic, Phi(380..389): A016396, A016397
polynomials, cyclotomic, Phi(390..399): A016398, A016399, A016400
polynomials, cyclotomic, Phi(40..49): A011635, A011636
polynomials, cyclotomic, Phi(400..409): A016401, A016402, A016403
polynomials, cyclotomic, Phi(410..419): A016404, A016405
polynomials, cyclotomic, Phi(420..429): A016406, A016407, A016408
polynomials, cyclotomic, Phi(434..439): A016409, A016410, A016411
polynomials, cyclotomic, Phi(440..449): A016412
polynomials, cyclotomic, Phi(450..459): A016413, A016414
polynomials, cyclotomic, Phi(460..469): A016415, A016416, A016417
polynomials, cyclotomic, Phi(470..479): A016418, A016419
polynomials, cyclotomic, Phi(480..489): A016420, A016421
polynomials, cyclotomic, Phi(490..499): A016422, A016423, A016424, A016425
polynomials, cyclotomic, Phi(500..509): A016426, A016427, A016428
polynomials, cyclotomic, Phi(60..69): A011637, A011638, A011639, A011640
polynomials, cyclotomic, Phi(70..79): A011641, A011642
polynomials, cyclotomic, Phi(80..89): A011643, A011644
polynomials, cyclotomic, Phi(90..99): A011645, A011646, A011647, A011648
polynomials, cyclotomic: see also <a href="Sindx_Cy.html#CYCLOTOMICPOLYNOMIALS">cyclotomic polynomials</a>
Polynomials, discriminants of, A004124, A007701, A001782, A006312
polynomials, divisors of x^n-1: see <a href="Sindx_Di.html#divisors">divisors</a>
polynomials, Euler: see <a href="Sindx_Eu.html#EulerP">Euler polynomials</a>
Polynomials, Gandhi, A005440, A005989, A005990
Polynomials, Hammersley, A006846
polynomials, Hermite: see <a href="Sindx_He.html#Hermite">Hermite polynomials</a>
Polynomials, hit, A001885, A001884, A004307, A001886, A001889, A001891, A001888, A001883, A001887, A001890, A004309, A004308
polynomials, irreducible over a finite field: (1) A002475, A056679, A056679, A057460, A057461, A057463, A057474, A057476, A057477, A057478, A057479, A057480,
polynomials, irreducible over a finite field: (2) A057481, A057482, A057483, A057484, A057485, A057487, A057488, A057489, A057496, A057751, A058059, A058203,
polynomials, irreducible over a finite field: (3) A058216, A058217, A058219, A058234, A058235, A058236, A058237, A058238, A058240, A058242, A058243, A058334,
polynomials, irreducible over a finite field: (4) A058857, A059006, A071428, A071522, A071565, A071566, A071642.
polynomials, irreducible over GF(q), q >= 4: A058334, A058857, A059006, A071522, A071565, A071566
polynomials, irreducible, binary, degree divides n: A000031*
polynomials, irreducible, binary, degree n: A001037*, A058943*, A027375
polynomials, irreducible, over GF(2): see polynomials, irreducible, binary
polynomials, irreducible, over GF(3), degree divides n: A001693*, A001867
polynomials, irreducible, over GF(3), degree n: A027376*
polynomials, irreducible, over GF(4), degree divides n: A001868, A054719
polynomials, irreducible, over GF(4), degree n: A027377*
polynomials, irreducible, over GF(5): A001692
polynomials, irreducible, over GF(7): A001693
polynomials, irreducible: see also <a href="Sindx_Tri.html#trinomial">trinomials over GF(2)</a>
polynomials, Laguerre: see <a href="Sindx_La.html#Laguerre">Laguerre polynomials</a>
polynomials, Legendre: see <a href="Sindx_Lc.html#Legendre">Legendre polynomials</a>
Polynomials, menage, A000033, A000159, A000181, A000185, A000425
polynomials, monic irreducible over finite fields: A058944, A058948, A058945, A058946
Polynomials, orthogonal, A002690, A002691
polynomials, over GF(2): see also <a href="Sindx_Ge.html#GF2X">GF(2)[X]-polynomials, sequences operating on</a>
Polynomials, period, A006308, A006311, A006309, A006312, A006310
polynomials, polynomial identities: A005729
polynomials, primitive: A000020 A011260* A027385 A027695 A027741 A027743 A027744 A027745 A058947*
polynomials, primitive: see also <a href="Sindx_Tri.html#trinomial">trinomials over GF(2)</a>
Polynomials, relatively prime, A001115
Polynomials, rook, A004306, A001924, A005777, A001925, A001926, A005778
polynomials, Shapiro: A001782
polynomials, trinomials irreducible over GF(2): (2) A057483, A057751
polynomials, trinomials irreducible over GF(3): (1) A058059, A058235, A058236, A058237, A058238, A058240, A058242, A058243, A058234, A058203, A058217, A058216,
polynomials, trinomials irreducible over GF(3): (2) A058219
polynomials|, <a NAME="polynomials_end">sequences related to (start):</a>
polyominoes  , <a NAME="polyominoes">sequences related to (start):</a>
polyominoes (1):: A001933, A001071, A006748, A002215, A001420, A006958, A003104, A000104, A002216, A006746, A001169, A001170, A001168
polyominoes (2):: A006027, A000988, A002214, A006986, A005519, A005435, A005963, A006766, A000228, A006535, A002212, A001207
polyominoes (3):: A006026, A001931, A006759, A006767, A006534, A006765, A006762, A006770, A006760, A006747, A006749, A002213, A006758, A001419, A006768, A006761, A006763, A006764
polyominoes : A000105*
polyominoes, 3-dimensional: A000162*
polyominoes, hexagonal: A000228*, A006535, A018190, A030225, A001998, A002216, A005963, A036359
polyominoes, indecomposable: A125709 A125753 A125759 A125761 A126742 A126743
polyominoes, rotationally symmetric: A006747
polyominoes, sets of four that are related: A000988, A000105, A151514, A002013
polyominoes, sets of four that are related: A006534, A000577, A151517, A151518
polyominoes, sets of four that are related: A006535, A000228, A151515, A151516
polyominoes, sets of four that are related: A151519, A006074, A151520, A151521
polyominoes, sets of four that are related: A151522, A056783, A151523, A151524
polyominoes, sets of four that are related: A151525, A056780, A151526, A151527
polyominoes, sets of four that are related: A151528, A057786, A151529, A151530
polyominoes, sets of four that are related: A151531, A057784, A151532, A151533
polyominoes, sets of four that are related: A151534, A159866, A151535, A151536
polyominoes, sets of four that are related: A151537, A019988, A151538, A037245
polyominoes, sets of four that are related: A151539, A159867, A151540, A151541
polyominoes, triangular: A000577*
polyominoes: see also <a href="Sindx_Am.html#animals">animals</a>
polyominoes; full list of sequences related to: (001) A000096 A000104 A000105 A000108 A000139 A000142 A000162 A000166 A000228 A000254 A000337 A000522
polyominoes; full list of sequences related to: (002) A000577 A000891 A000984 A000988 A001003 A001053 A001071 A001168 A001169 A001170 A001207 A001224
polyominoes; full list of sequences related to: (003) A001394 A001399 A001405 A001419 A001420 A001519 A001524 A001700 A001764 A001787 A001788 A001835
polyominoes; full list of sequences related to: (004) A001844 A001870 A001931 A001933 A001998 A002013 A002212 A002213 A002214 A002215 A002216 A002467
polyominoes; full list of sequences related to: (005) A002538 A002620 A002627 A002694 A002894 A003104 A003167 A003480 A004003 A005178 A005435 A005436
polyominoes; full list of sequences related to: (006) A005519 A005768 A005769 A005770 A005803 A005963 A006013 A006026 A006027 A006074 A006318 A006534
polyominoes; full list of sequences related to: (007) A006535 A006659 A006724 A006743 A006746 A006747 A006748 A006749 A006758 A006759 A006760 A006761
polyominoes; full list of sequences related to: (008) A006762 A006763 A006764 A006765 A006766 A006767 A006768 A006770 A006958 A007317 A007743 A007808
polyominoes; full list of sequences related to: (009) A007846 A008275 A008574 A008592 A008602 A008776 A010683 A011117 A014559 A016933 A016957 A017293
polyominoes; full list of sequences related to: (010) A017341 A017569 A018190 A019439 A019988 A022144 A022444 A022445 A024311 A026106 A026118 A026298
polyominoes; full list of sequences related to: (011) A027709 A028247 A028399 A030222 A030223 A030224 A030225 A030226 A030227 A030228 A030233 A030234
polyominoes; full list of sequences related to: (012) A030235 A030435 A030436 A030444 A030445 A030446 A030447 A030448 A030519 A030520 A030525 A030529
polyominoes; full list of sequences related to: (013) A030532 A030534 A033184 A033484 A033877 A033878 A034010 A036359 A036364 A036365 A036366 A036367
polyominoes; full list of sequences related to: (014) A036368 A036369 A036496 A037245 A038119 A038140 A038141 A038142 A038143 A038144 A038145 A038146
polyominoes; full list of sequences related to: (015) A038147 A038392 A038577 A038578 A038579 A038622 A038718 A038731 A039625 A039626 A039627 A039628
polyominoes; full list of sequences related to: (016) A039629 A039630 A039631 A039632 A039633 A044043 A044045 A044046 A044047 A045445 A045648 A045649
polyominoes; full list of sequences related to: (017) A046697 A046984 A047749 A047875 A048489 A048664 A049219 A049220 A049221 A049222 A049429 A049430
polyominoes; full list of sequences related to: (018) A049540 A051738 A051743 A053022 A053090 A053091 A053151 A054359 A054360 A054361 A054963 A055022
polyominoes; full list of sequences related to: (019) A055024 A055581 A055588 A056755 A056769 A056779 A056780 A056783 A056840 A056841 A056844 A056845
polyominoes; full list of sequences related to: (020) A056846 A056877 A056878 A056879 A056880 A056881 A056882 A056883 A056884 A057051 A057418 A057419
polyominoes; full list of sequences related to: (021) A057420 A057422 A057423 A057424 A057425 A057426 A057707 A057712 A057721 A057724 A057725 A057729
polyominoes; full list of sequences related to: (022) A057730 A057753 A057766 A057779 A057784 A057786 A057973 A059483 A059573 A059678 A059679 A059680
polyominoes; full list of sequences related to: (023) A059681 A059682 A059683 A059684 A059716 A060677 A061667 A063130 A063655 A065068 A066158 A066273
polyominoes; full list of sequences related to: (024) A066281 A066283 A066287 A066288 A066331 A066453 A066454 A066822 A067675 A067676 A067769 A068091
polyominoes; full list of sequences related to: (025) A068870 A070764 A070765 A070766 A070767 A070768 A071332 A071333 A071334 A071431 A073149 A073733
polyominoes; full list of sequences related to: (026) A075125 A075198 A075199 A075200 A075201 A075202 A075203 A075204 A075205 A075206 A075207 A075208
polyominoes; full list of sequences related to: (027) A075209 A075210 A075211 A075212 A075213 A075214 A075215 A075216 A075217 A075218 A075219 A075220
polyominoes; full list of sequences related to: (028) A075221 A075222 A075223 A075224 A075678 A075679 A079102 A079103 A079104 A079105 A079106 A079402
polyominoes; full list of sequences related to: (029) A079523 A079859 A079935 A081706 A082395 A082397 A082398 A084477 A084478 A084479 A084480 A084481
polyominoes; full list of sequences related to: (030) A085478 A085929 A087656 A088972 A089454 A089455 A089456 A089457 A089458 A090992 A090993 A090994
polyominoes; full list of sequences related to: (031) A090995 A091405 A092392 A092582 A093118 A093119 A093120 A093877 A093989 A093990 A093991 A093992
polyominoes; full list of sequences related to: (032) A094097 A094164 A094165 A094166 A094168 A094169 A094170 A094638 A094864 A095968 A096004 A096267
polyominoes; full list of sequences related to: (033) A097472 A099003 A099018 A099041 A099048 A099943 A099944 A099945 A100092 A100093 A100094 A100312
polyominoes; full list of sequences related to: (034) A100313 A100314 A100315 A100316 A100822 A101409 A102699 A103464 A103465 A103466 A103467 A103468
polyominoes; full list of sequences related to: (035) A103469 A103470 A103471 A103472 A103473 A104270 A104519 A105292 A105306 A105450 A105929 A108070
polyominoes; full list of sequences related to: (036) A108071 A108072 A108838 A111189 A112509 A112510 A112511 A113174 A113227 A118797 A119532 A119602
polyominoes; full list of sequences related to: (037) A119611 A120102 A120103 A120104 A120117 A120371 A120386 A120404 A120417 A120448 A120646 A120647
polyominoes; full list of sequences related to: (038) A120648 A121149 A121150 A121151 A121193 A121194 A121198 A121286 A121298 A121299 A121300 A121301
polyominoes; full list of sequences related to: (039) A121302 A121308 A121309 A121310 A121460 A121461 A121462 A121463 A121466 A121468 A121469 A121486
polyominoes; full list of sequences related to: (040) A121552 A121553 A121554 A121555 A121579 A121580 A121581 A121582 A121583 A121584 A121585 A121586
polyominoes; full list of sequences related to: (041) A121632 A121633 A121634 A121635 A121636 A121637 A121638 A121639 A121691 A121692 A121693 A121694
polyominoes; full list of sequences related to: (042) A121695 A121696 A121697 A121698 A121745 A121746 A121747 A121748 A121749 A121750 A121751 A121752
polyominoes; full list of sequences related to: (043) A121753 A121754 A121964 A121983 A122096 A122097 A122104 A122105 A122133 A122539 A122736 A122880
polyominoes; full list of sequences related to: (044) A123044 A123104 A123105 A123106 A123140 A123141 A123142 A123205 A123209 A123277 A123284 A123285
polyominoes; full list of sequences related to: (045) A123286 A123287 A123288 A123289 A123595 A123598 A123600 A123602 A123604 A123605 A123606 A123607
polyominoes; full list of sequences related to: (046) A123645 A123660 A123661 A123662 A125709 A125709 A125753 A125753 A125759 A125759 A125761 A125761
polyominoes; full list of sequences related to: (047) A126020 A126026 A126138 A126139 A126140 A126141 A126177 A126178 A126179 A126180 A126181 A126182
polyominoes; full list of sequences related to: (048) A126183 A126184 A126185 A126186 A126187 A126188 A126189 A126190 A126202 A126321 A126322 A126323
polyominoes; full list of sequences related to: (049) A126324 A126742 A126742 A126743 A126764 A126765 A127560 A127935 A128611 A129183 A129638 A129639
polyominoes; full list of sequences related to: (050) A130616 A130622 A130623 A130866 A130867 A131467 A131481 A131482 A131486 A131487 A131488 A131635
polyominoes; full list of sequences related to: (051) A132293 A134436 A134437 A135708 A135711 A135942 A136129 A137193 A140709 A140710 A142886 A144553
polyominoes; full list of sequences related to: (052) A144554 A144876 A147680 A151514 A151515 A151516 A151517 A151518 A151519 A151520 A151521 A151522
polyominoes; full list of sequences related to: (053) A151523 A151524 A151525 A151526 A151527 A151528 A151529 A151530 A151531 A151532 A151533 A151534
polyominoes; full list of sequences related to: (054) A151535 A151536 A151537 A151538 A151539 A151540 A151541 A153334 A153335 A153336 A153337 A153338
polyominoes; full list of sequences related to: (055) A153339 A153340 A153360 A153361 A153362 A153363 A153364 A153365 A153366 A153367 A153368 A153369
polyominoes; full list of sequences related to: (056) A153370 A153371 A153372 A153373 A155217 A155218 A155219 A155220 A155221 A155222 A155223 A155224
polyominoes; full list of sequences related to: (057) A155225 A155226 A155227 A155228 A155229 A155230 A155231 A155232 A155233 A155234 A155235 A155236
polyominoes; full list of sequences related to: (058) A155237 A155238 A155239 A155240 A155241 A155242 A155243 A155244 A155245 A155246 A155247 A155248
polyominoes; full list of sequences related to: (059) A155249 A155250 A155251 A155252 A155253 A155254 A155255 A155256 A155257 A155258 A155259 A155260
polyominoes; full list of sequences related to: (060) A155261 A155262 A155263 A155264 A155265 A155266 A155267 A155268 A155269 A155270 A155271 A155272
polyominoes; full list of sequences related to: (061) A155273 A155274 A155275 A155276 A155277 A155278 A155279 A155280 A155281 A155282 A155283 A155284
polyominoes; full list of sequences related to: (062) A155285 A155286 A155287 A155288 A155289 A155290 A155291 A155292 A155293 A155294 A155295 A155296
polyominoes; full list of sequences related to: (063) A155297 A155298 A155299 A155300 A155301 A155302 A155303 A155304 A155305 A155306 A155307 A155308
polyominoes; full list of sequences related to: (064) A155309 A155310 A155311 A155312 A155313 A155314 A155315 A155316 A155317 A155318 A155319 A155320
polyominoes; full list of sequences related to: (065) A155321 A155322 A155323 A155324 A155325 A155326 A155327 A155328 A155329 A155330 A155331 A155332
polyominoes; full list of sequences related to: (066) A155333 A155334 A155335 A155336 A155337 A155338 A155339 A155340 A155341 A155342 A155343 A155344
polyominoes; full list of sequences related to: (067) A155345 A155346 A155347 A155348 A155349 A155350 A155351 A155352 A155353 A155354 A155355 A155356
polyominoes; full list of sequences related to: (068) A155357 A155358 A155359 A155360 A155361 A155362 A155363 A155364 A155365 A155366 A155367 A155368
polyominoes; full list of sequences related to: (069) A155369 A155370 A155371 A155372 A155373 A155374 A155375 A155376 A155377 A155378 A155379 A155380
polyominoes; full list of sequences related to: (070) A155381 A155382 A155383 A155384 A155385 A155386 A155387 A155388 A155389 A155390 A155391 A155392
polyominoes; full list of sequences related to: (071) A155393 A155394 A155395 A155396 A155397 A155398 A155399 A155400 A155401 A155402 A155403 A155404
polyominoes; full list of sequences related to: (072) A155405 A155406 A155407 A155408 A155409 A155410 A155411 A155412 A155413 A155414 A155415 A155416
polyominoes; full list of sequences related to: (073) A155417 A155418 A155419 A155420 A155421 A155422 A155423 A155424 A155425 A155426 A155427 A155428
polyominoes; full list of sequences related to: (074) A155429 A155430 A155431 A155432 A155433 A155434 A155435 A155436 A155437 A155438 A155439 A155440
polyominoes; full list of sequences related to: (075) A155441 A155442 A155443 A155444 A155445 A155446 A155447 A155448 A156022 A156023 A156024 A156025
polyominoes; full list of sequences related to: (076) A157608 A159866 A159867
polyominoes| , <a NAME="polyominoes_end">sequences related to (start):</a>
polytans: A006074
polytans: see also <a href="Sindx_Pol.html#polyominoes">polyominoes</a>
polytopes, <a NAME="polytopes">sequences related to (start):</a>
polytopes, regular: A060296, A053016, A063924, A063925, A063926, A063927, A063722
polytopes, regular: A093478, A093479
polytopes: A000943* and A060296* (n-dimensional), A005841* (4-dimensional)
polytopes: see also <a href="Sindx_Pol.html#polyhedra">polyhedra</a>
polytopes| <a NAME="polytopes_end">sequences related to (start):</a>
Poonen-Rubinstein paper  on sequences formed by drawing all diagonals in regular polygon, <a NAME="Poonen">sequences related to (start):</a>
Poonen-Rubinstein paper (1): A006533*, A006561*, A006600*, A007569*, A007678*
Poonen-Rubinstein paper (2): A062361 A067151 A067152 A067153 A067154 A067155 A067156 A067157 A067158 A067159 A067162 A067163
Poonen-Rubinstein paper (3): A067164 A067165 A067166 A067167 A067168 A067169 A091908 A092098 A092866 A092867 A108053
Poonen-Rubinstein paper: see also A000127
Poonen-Rubinstein paper: see also entry for <a href="Sindx_Ch.html#CHORD">chords in a circle</a>
Poonen-Rubinstein paper| on sequences formed by drawing all diagonals in regular polygon, <a NAME="Poonen_end">sequences related to (start):</a>
Popes: A113515
popular songs, see: <a href="Sindx_So.html#songs">songs, popular</a>
porisms: A002348
Portuguese: A057696, A057697, A051385, A092752, A060248, A097897
Portuguese: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Pos DIVIDER
posets , <a NAME="posets">sequences related to (start):</a>
posets : A000112* (unlabeled), A001035* (labeled), A003425, A065066 (triangle)
posets, antichains in: A006360-A006362, A056932-A056937, A056939-A056941
posets, chains in: A007047, A038719-A038721
posets, connected: A000608* (unlabeled), A001927* (labeled)
posets, forbidden: A058260
posets, graded: A001831 (labeled), A001833, A048194
posets, increasing: A006455*
posets, irreducible: A003431 (unlabeled), A046904-A046908
posets, N-free: A003430*, A007453, A007454
posets, reduced: A066302* (labeled), A066303, A066304* (unlabeled), A066305
posets, series-parallel: A058349, A058350, A053554* (labeled)
posets: see also <a href="Sindx_La.html#Lattices">Lattices</a>
posets: see also <a href="Sindx_Li.html#linear_extensions">linear extensions</a>
posets: see also A001827, A001828, A001829, A001830, A003404, A003405, A006251, A007555, A007776
posets|, <a NAME="posets_end">sequences related to (start):</a>
positive integers: A000027*
Post functions, <a NAME="Post_functions">sequences related to (start):</a>
Post functions:: A002825, A002543, A002542, A002824, A002857, A002826, A001328, A001324, A001326, A001327, A001323, A001322, A001325, A001321
Post functions| <a NAME="Post_functions_end">sequences related to (start):</a>
postage stamp problem, <a NAME="postage_stamp_problem">sequences related to (start):</a>
postage stamp problem: (1) A084182 and A084193 (table of solutions)
postage stamp problem: (2) rows: A014616, A001208, A001209, A001210, A001211, A053346, A053348
postage stamp problem: (3) columns: A001212, A001213, A001214, A001215, A001216, A005342, A005343, A005344, A075060
postage stamp problem: (4) See also: A006638, A004129, A004131, A004132, A006639, A006640
postage stamp problem| <a NAME="postage_stamp_problem_end">sequences related to (start):</a>
Potts model, <a NAME="Potts_model">sequences related to (start):</a>
Potts model: (1) A001393 A002891 A002926 A007270 A007271 A007276 A007277 A007278 A057374 A057375 A057376 A057377
Potts model: (2) A057378 A057379 A057380 A057381 A057382 A057383 A057384 A057385 A057386 A057387 A057388 A057389
Potts model: (3) A057390 A057391 A057392 A057393 A057394 A057395 A057396 A057397 A057398 A057399 A057400 A057401
Potts model: (4) A057402 A057403 A057404 A057405
Potts model| <a NAME="Potts_model_end">sequences related to (start):</a>
Pow DIVIDER
power set, chains in: A007047
power train: see <a href="Sindx_Pow.html#powertrain">powertrain</a>
power-sum numbers: A007603*
powerful numbers , <a NAME="powerful">sequences related to (start):</a>
powerful numbers: A001694*, A007532*, A023052*, A061862*, A134703*, A005934, A036966
powerful numbers: see also (1): A050240 A050241 A057521 A060859 A113839 A115645 A115651 A115676 A115686 A115687 A115689 A115691
powerful numbers: see also (2): A115693 A115695 A115697 A116064 A140172
powerful numbers|, <a NAME="powerful_end">sequences related to (start):</a>
powers  , <a NAME="POWERS">sequences related to (start):</a>
powers (1):: A006899, A000079, A001357, A000244, A000290, A000302, A000351, A000400, A000420, A000578, A001018, A001019, A001020, A001021
powers (2):: A000468, A001022, A001023, A001024, A001025, A001026, A001027, A001029, A001682, A000584, A001014, A001015, A001016, A001017
powers of 10 written in base 8: A000468
powers of 10: A011557*
powers of 11: A001020
powers of 12: A001021
powers of 13: A001022
powers of 14: A001023
powers of 15: A001024
powers of 16: A001025
powers of 17: A001026
powers of 18: A001027
powers of 19: A001029
powers of 20: A009964
powers of 21: A009965
powers of 22: A009966
powers of 23: A009967
powers of 24: A009968
powers of 25: A009969
powers of 26: A009970
powers of 27: A009971
powers of 28: A009972
powers of 29: A009973
powers of 2: A000079*
powers of 2: see also (1): A000051 A000225 A000799 A000918 A001146 A001357 A001370 A002662 A004094 A004642 A004643 A004644
powers of 2: see also (2): A004645 A004646 A004647 A004651 A004653 A004654 A004655 A005126 A006127 A006899 A007689 A030622
powers of 2: see also (3): A030623 A030624 A034906
powers of 30: A009974
powers of 31: A009975
powers of 32: A009976
powers of 33: A009977
powers of 34: A009978
powers of 35: A009979
powers of 36: A009980
powers of 37: A009981
powers of 38: A009982
powers of 39: A009983
powers of 3: A000244*
powers of 3: see also (1): A002379, A002380, A001047 A000244 A004167 A004656 A004658 A004659 A004660 A004661 A004662
powers of 3: see also (2): A004663 A004665 A004666 A004667 A004668 A004669 A006899
powers of 40: A009984
powers of 41: A009985
powers of 42: A009986
powers of 43: A009987
powers of 44: A009988
powers of 45: A009989
powers of 46: A009990
powers of 47: A009991
powers of 48: A009992
powers of 4: A000302*
powers of 5: A000351*
powers of 6: A000400*
powers of 7: A000420*
powers of 8: A001018*
powers of 9: A001019*
powers of a prime but not prime: A025475
powers of e rounded up: A001671
powers of Pi rounded upwards: A001673
powers that be, A004143
powers, not the difference of two: A074981*, A074980, A069586, A023057, A066510, A075823
powers, perfect: A001597*, A007916
powers, the difference of two: A075788, A075789, A075790, A075791
powers| <a NAME="POWERS_end">sequences related to (start):</a>
powertrain function, <a NAME="powertrain">sequences related to (start):</a>
powertrain function:  A133500*, A133506, A133507
powertrain function: fixed points: A135385
powertrain function: high point in trajectory of n: A135381; records: A135382
powertrain function: length of trajectory of n: A133501, A133502
powertrain function: numbers that converge to 2592: A135384
powertrain function: records for length of trajectory: A133503, A133508
powertrain function: records: A133504, A133505
powertrain function: see also <a href="Sindx_Per.html#persistence">persistence</a>
powertrain function| <a NAME="powertrain_end">sequences related to (start):</a>
Pra DIVIDER
practical numbers: A005153*, A007620*
Prague clock sequence: A028354*
preferential arrangements: A000670*
preorders: A006326, A006327, A006328, A006329
previous prime , <a NAME="previous_prime">sequences related to (start):</a>
previous prime and next prime etc. for  terms of various sequences: [NP = next prime, PP = previous prime, NPMPP = next prime - previous prime, nMPP = n - previous prime, NPMn = next prime - n, MIN = min of nMPP and NPMn]
previous prime, next prime etc. .... .............................NP..........PP.......NPMPP....nMPP........NPMn ....MIN
previous prime, next prime etc. for A000027 (n)... A007918 A007917 A013633 A049711 A013632 A051702
previous prime, next prime etc. for A000079 (2^n). A014210 A014234 A058249 A013603 A013597 A059959
previous prime, next prime etc. for A000142 (n!).. A037151 A006990 A054588 A033933 A033932 A056752
previous prime, next prime etc. for A000290 (n^2). A007491 A053001 A058043 A056927 A053000 A060272
previous prime, next prime etc. for A001747 (2p).. A058786 A059788 A060271 A059789 A059787 A059790
previous prime, next prime etc. for A002110 (q(n)) A038710 A007014 A058044 A060270 A038711 A060269
previous prime, next prime etc. for A003418 (LCM) A060357 A060358 A060359 A060360 A060361 A060362
previous prime, next prime etc. for A005843 (2n).. A060264 A060308 A060267 A049653 A060266 A060268
previous prime: version 1: A007917, version 2: A151799
previous prime|, <a NAME="previous_prime_end">sequences related to (start):</a>
Pri DIVIDER
prime factorizations of important sequences: see <a href="Sindx_Fa.html#factoring">factorizations of important sequences</a>
prime factors, <a NAME="prime_factors">sequences related to (start):</a>
prime factors: at least (1) 1: A000027 2: A002808 3: A033942 4: A033987 5: A046304
prime factors: at least (2) 6: A046305 7: A046307 8: A046309 9: A046311 10: A046313
prime factors: at most 1: A000040 2: A037143 3: A037144 4: A166718 5: A166719
prime factors: exactly (1) 1: A000040 2: A001358 3: A014612 4: A014613 5: A014614
prime factors: exactly (2) 6: A046306 7: A046308 8: A046310 9: A046312 10: A046314
prime factors: exactly (3) 11: A069272 12: A069273 13: A069274 14: A069275 15: A069276
prime factors: exactly (4) 16: A069277 17: A069278 18: A069279 19: A069280 20: A069281
prime factors: number of A001222
prime factors: see also <a href="Sindx_Di.html#distinct_prime_factors">distinct prime factors</a>
prime factors: table of: A078840
prime factors| <a NAME="prime_factors_end">sequences related to (start):</a>
prime numbers of measurement: A002048*, A002049*
prime numbers: A000040*, A008578
prime plus twice a square: A046903
prime powers, <a NAME="prime_powers">sequences related to (start):</a>
prime powers: base: A025473, exponent: A025474
prime powers: complement of: A024619
prime powers: excluding primes: base: A025476, exponent: A025477
prime powers: excluding primes: complement of: A085971
prime powers: excluding primes: gaps: A053707
prime powers: excluding primes: gaps: record: A167186, start: A167188, end: A167189
prime powers: excluding primes: list of: A025475, previous: A167185, next: A167184
prime powers: excluding primes: number of: A085501
prime powers: gaps: A057820
prime powers: gaps: record: A121492, start: A002540, end: A167236
prime powers: list of: A000961, previous: A031218, next: A000015
prime powers: number of: A065515
prime powers| <a NAME="prime_powers_end">sequences related to (start):</a>
prime pyramid: A051237*, A036440
Prime quadruplets:: A007530
prime races, <a NAME="prime_races">sequences related to (start):</a>
prime races: A007350, A007351, A007352, A007353, A007354, A007355, A096447, A096448, A096449, A096450, A096451, A096452, A096453, A096454, A096455, A098044
prime races: see also <a href="Sindx_Ra.html#races">races</a>
prime races| <a NAME="prime_races_end">sequences related to (start):</a>
prime signature, <a NAME="prime_signature">sequences related to (start):</a>
prime signature: A025487*
prime signature: see also (1) A000688 A005361 A008480 A008683 A008966 A025488 A035206 A035341 A036035 A036041 A038538 A046660
prime signature: see also (2) A046951 A050320 A050322 A050323 A050324 A050325 A050326 A050327 A050328 A050329 A050330 A050331
prime signature: see also (3) A050332 A050333 A050334 A050335 A050336 A050337 A050338 A050339 A050340 A050341 A050345 A050346
prime signature: see also (4) A050347 A050348 A050349 A050350 A050354 A050355 A050356 A050357 A050358 A050359 A050360 A050361
prime signature: see also (5) A050362 A050363 A050364 A050370 A050371 A050372 A050373 A050374 A050375 A050377 A050378 A050379
prime signature: see also (6) A050380 A050382 A051282 A051466 A051707 A052213 A052214 A052304 A052305 A052306 A056099 A056153
prime signature: see also (7) A056808 A056823 A057335
prime signature: see also (8) <a href="Sindx_Pri.html#primes_AP">primes, in arithmetic progressions</a>
prime signature| <a NAME="prime_signature_end">sequences related to (start):</a>
prime triplets: A007529
prime(2^n): A033844*, A018249, A051438, A051440, A051439
prime(k^n): A033844, A038833, A119772, A055680, A058192, A058239, A119773, A119774, A006988, A058244, A058245, A058246, A119775, A119776, A119777
prime(n) == +/-k (mod n): (1) A023143, A023144, A023145, A023146, A023147, A023148, A023149, A023150, A023151, A023152, A049204, A092044
prime(n) == +/-k (mod n): (2) A092045, A092046, A092047, A092048, A092049, A092050, A092051, A092052.
prime, largest <=n: A007917
prime, largest dividing n: A006530
prime, smallest whose product of digits is (something): A088653 A088654 A089298 A089364 A089365 A089386 A089912
prime, weakly: A050249
PRIMEGAME: A007542, A007546, A007547
PrimePi(x), number of primes <= x: A000720*
primes , <a NAME="primes">sequences related to (start):</a>
primes : A000040*
primes gaps, see <a href="Sindx_Pri.html#gaps">primes, gaps between</a>
primes in arithmetic progressions, see <a href="Sindx_Pri.html#primes_AP">primes, in arithmetic progressions</a>
primes involving quasi-repdigits D(R)nE: (01) A049054,A088274,A088275,A102929,A102930,A102931,A102932,A102933,A102934,A102935,
primes involving quasi-repdigits D(R)nE: (02) A102936,A102937,A102938,A102939,A102940,A102941,A102942,A102943,A102944,A102945,
primes involving quasi-repdigits D(R)nE: (03) A102946,A102947,A081677,A101392,A102948,A102949,A102950,A102951,A102952,A102953,
primes involving quasi-repdigits D(R)nE: (04) A102954,A102955,A098930,A099006,A102956,A098959,A102957,A098960,A102958,A102959,
primes involving quasi-repdigits D(R)nE: (05) A102959,A102960,A102961,A102962,A102963,A102964,A056807,A100501,A101393,A102965,
primes involving quasi-repdigits D(R)nE: (06) A102966,A102967,A102968,A102969,A102970,A102971,A102972,A102973,A102974,A102975,
primes involving quasi-repdigits D(R)nE: (07) A102976,A102977,A102978,A102979,A102980,A101396,A101398,A056806,A101397,A101395,
primes involving quasi-repdigits D(R)nE: (08) A101394,A102981,A102982,A102983,A102984,A102985,A102986,A102987,A102988,A102989,
primes involving quasi-repdigits D(R)nE: (09) A102990,A102991,A102992,A102993,A102994,A099005,A099017,A102995,A102996,A102997,
primes involving quasi-repdigits D(R)nE: (10) A102998,A102999,A103000,A103001,A103002,A103003,A096254,A103004,A103005,A103006,
primes involving quasi-repdigits D(R)nE: (11) A103007,A103008,A103009,A103010,A103011,A103012,A103013,A103014,A103015,A103016,
primes involving quasi-repdigits D(R)nE: (12) A103017,A103018,A103019,A103020,A103021,A103022,A103023,A103024,A103025,A056805,
primes involving quasi-repdigits D(R)nE: (13) A103027,A103027,A103028,A103029,A103030,A097402,A103031,A103032,A103033,A103034,
primes involving quasi-repdigits D(R)nE: (14) A103035,A103036,A103037,A103038,A103039,A103040,A103041,A103042,A103043,A103044,
primes involving quasi-repdigits D(R)nE: (15) A103045,A103046,A103047,A103048,A103049,A056804,A097970,A097954,A103050,A103051,
primes involving quasi-repdigits D(R)nE: (16) A103052,A103053,A103054,A103055,A103056,A103057,A103058,A103059,A103060,A103061,
primes involving quasi-repdigits D(R)nE: (17) A103062,A103063,A103064,A103065,A103066,A103067,A103068,A099190,A103069,A103070,
primes involving quasi-repdigits D(R)nE: (18) A103071,A103072,A103073,A103074,A103075,A103076,A103077,A103078,A103079,A103080,
primes involving quasi-repdigits D(R)nE: (19) A103081,A103082,A103083,A103084,A103085,A103086,A103087,A103088,A103089,A103090,
primes involving quasi-repdigits D(R)nE: (20) A103091,A103092,A056797,A096774,A100473,A103093,A103094,A103095,A103096,A103097,
primes involving quasi-repdigits D(R)nE: (21) A103098,A103099,A103100,A103101,A103102,A103103,A103104,A103105,A103106,A103107,
primes involving quasi-repdigits D(R)nE: (22) A103108,A103109
primes involving repunits , <a NAME="Pri_rep">sequences related to (start):</a>
primes involving repunits, X*10*repunits+Y: (1): A004023, A056654, A056655, A056659, A056660, A056656, A056677, A056678, A055520, A056680,
primes involving repunits, X*10*repunits+Y: (2): A056681, A056661, A056682, A056683, A056684, A056685, A056686, A056687, A056658, A056657,
primes involving repunits, X*10*repunits+Y: (3): A056688, A056689, A056693, A056664, A056694, A056695, A056663, A056696, A056662.
primes involving repunits, X*10^n+Y*repunits: (1): A004023, A056698, A089147, A002957, A056700, A056701, A056702, A056703, A056704,
primes involving repunits, X*10^n+Y*repunits: (2): A056705, A056706, A056707, A056708, A056712, A056713, A056714, A056715, A056716,
primes involving repunits, X*10^n+Y*repunits: (3): A056717, A056718, A056719, A056720, A056721, A056722, A056723, A056724, A056725,
primes involving repunits, X*10^n+Y*repunits: (4): A056726, A056727.
primes involving repunits, X*repunits+-Y: (1): A004023, A097683, A097684, A097685, A084832, A096506, A099409, A099410, A055557, A099411,
primes involving repunits, X*repunits+-Y: (2): A099412, A096845, A099413, A099414, A099415, A099416, A099417, A099418, A098088, A096507,
primes involving repunits, X*repunits+-Y: (3): A099419, A099420, A098089, A099421, A099422, A096846, A096508, A095714, A089675
primes involving repunits|, <a NAME="Pri_rep_end">sequences related to (start):</a>
primes of the form binomial(k*n, n) +- 1, k=2..6: A066699, A066726, A125221, A125220, A125241, A125240, A125243, A125242, A125245, A125244.
primes p such that x^k = 2 has a solution mod p, <a NAME="smp">sequences related to (start):</a> (**) means the divergence occurs beyond the last entry shown in the OEIS. [Indexed by Patrick De Geest (pdg(AT)worldofnumbers.com)]
primes p such that x^k = 2 has a solution mod p, k=02 to 09: A038873 (or A001132), A040028, A040098, A040159, A040992, A042966, A045315(**), A049596,
primes p such that x^k = 2 has a solution mod p, k=10 to 19: A049542, A049543, A049544, A049545, A049546, A049547, A045315, A049549, A049550, A049551
primes p such that x^k = 2 has a solution mod p, k=20 to 29: A049552, A049553, A049554, A049555, A049556, A049557, A049558, A049596(**), A049560, A049561
primes p such that x^k = 2 has a solution mod p, k=30 to 39: A049562, A000040(**), A049564, A049565, A049566, A049567, A049568, A049569, A049570, A049571
primes p such that x^k = 2 has a solution mod p, k=40 to 49: A049572, A049573, A049574, A058853, A049576, A049577, A049578, A000040(**), A049580, A042966(**)
primes p such that x^k = 2 has a solution mod p, k=50 to 59: A049582, A049583, A049584, A049585, A049550(**), A049587, A049588, A049589, A049590, A000040(**)
primes p such that x^k = 2 has a solution mod p, k=60 to 63: A049592, A000040(**), A049594, A049595.
primes p such that x^k = 2 has a solution mod p| <a NAME="smp_end">sequences related to (start):</a>
primes such that the sum of the predecessor and successor primes is divisible by k: A112681, A112794, A112731, A112789, A112795, A112796, A112804, A112847, A112859, A113155, A113156, A113157, A113158
primes that become a different prime under some mapping (1): A180533 A180535 A180537 A180560 A180541 A180543 A180552 A180581 A180561 A180530 A180526 A180527
primes that become a different prime under some mapping (2): A180545 A180525 A180528 A180531 A180559 A180529 A180532 A180538 A180534 A180517 A180540 A180542
primes that become a different prime under some mapping (3): A180518 A180548 A180547 A180519 A180546 A180549 A180550 A180553 A180520 A180555 A180557 A180521
primes that become a different prime under some mapping (4): A180558 A180522 A180523 A180524 A180536 A180539 A180544 A180554 A180551 A180556
primes with X as smallest positive primitive root: (1) A001122, A001123, A001124, A001125, A001126, A061323, A061324, A061325, A061326, A061327,
primes with X as smallest positive primitive root: (2) A061328, A061329, A061330, A061331, A061332, A061333, A061334, A061335, A061730, A061731,
primes with X as smallest positive primitive root: (3) A061732, A061733, A061734, A061735, A061736, A061737, A061738, A061739, A061740, A061741,
primes with X as smallest positive primitive root: (4) A114657, A114658, A114659, A114660, A114661, A114662, A114663, A114664, A114665, A114666,
primes with X as smallest positive primitive root: (5) A114667, A114668, A114669, A114670, A114671, A114672, A114673, A114674, A114675, A114676,
primes with X as smallest positive primitive root: (6) A114677, A114678, A114679, A114680, A114681, A114682, A114683, A114684, A114685, A114686
primes, <= n: A000720*
primes, absolute: A003459*
primes, additive: A046704
primes, almost: see <a href="Sindx_Al.html#ALMOSTPRIMES">almost primes</a>
primes, approximations to: A050503, A050502, A050504
primes, arithmetic progressions of, see <a href="Sindx_Pri.html#primes_AP">primes, in arithmetic progressions</a>
primes, automorphic: A046883, A046884
primes, balanced: A006562, A051795, A054342
primes, Bertrand: A006992*, A051501
primes, Bertrand: see also <a href="Sindx_Be.html#Bertrand">Bertrand's Postulate</a>
Primes, by class number, A002148, A002142, A002146, A002147, A002149
primes, by Erdos-Selfridge class n+: (0) A005113, A126433, A101253
primes, by Erdos-Selfridge class n-: (0) A056637, A101231, A126805
primes, by Erdos-Selfrigde class n+: (1) A005105, A005106, A005107, A005108, A081633, A081634
primes, by Erdos-Selfrigde class n+: (2) A081635, A081636, A081637, A081638, A081639, A084071, A090468, A129474, A129475
primes, by Erdos-Selfrigde class n-: (1) A005109, A005110, A005111, A005112, A081424, A081425
primes, by Erdos-Selfrigde class n-: (2) A081426, A081427, A081428, A081429, A081430, A081640, A081641, A129248, A129249, A129250
Primes, by number of digits, A003617, A006879, A006880, A003618
primes, by order: (1) A007821, A049078, A049079, A049080, A049081, A058322, A058324, A058325, A058326, A058327, A058328, A093046
primes, by order: (2) A000040, A006450, A038580, A049090, A049203, A049202, A057849, A057850, A057851, A057847, A058332, A093047
Primes, by period length, A007615
primes, by primitive root , <a NAME="primes_root">sequences related to (start):</a>
primes, by primitive root: (01) A001122 A001123 A001124 A001125 A001126 A001913 A002230 A003147 A007348 A007349 A019334 A019335
primes, by primitive root: (02) A019336 A019337 A019338 A019339 A019340 A019341 A019342 A019343 A019344 A019345 A019346 A019347
primes, by primitive root: (03) A019348 A019349 A019350 A019351 A019352 A019353 A019354 A019355 A019356 A019357 A019358 A019359
primes, by primitive root: (04) A019360 A019361 A019362 A019363 A019364 A019365 A019366 A019367 A019368 A019369 A019370 A019371
primes, by primitive root: (05) A019372 A019373 A019374 A019375 A019376 A019377 A019378 A019379 A019380 A019381 A019382 A019383
primes, by primitive root: (06) A019384 A019385 A019386 A019387 A019388 A019389 A019390 A019391 A019392 A019393 A019394 A019395
primes, by primitive root: (07) A019396 A019397 A019398 A019399 A019400 A019401 A019402 A019403 A019404 A019405 A019406 A019407
primes, by primitive root: (08) A019408 A019409 A019410 A019411 A019412 A019413 A019414 A019415 A019416 A019417 A019418 A019419
primes, by primitive root: (09) A019420 A019421 A029932 A047933 A047934 A047935 A047936 A048975 A048976 A066529 A023048
primes, by primitive root: (09) A105874-A105914
primes, by primitive root: see also <a href="Sindx_Ar.html#Artin">Artin's constant</a>
primes, by primitive root|, <a NAME="primes_root_end">sequences related to (start):</a>
Primes, chains of, A005603, A005602
primes, characteristic function of: A010051
Primes, compressed, A002036
primes, concatenation of: A033308
Primes, consecutive, A006549, A007700, A007513, A007529, A007530, A006489
primes, cuban: A002407, A002648, A007645
primes, Cullen: A005849*, A050920*
primes, deceptive: A000864
Primes, decompositions into, A002375, A002126, A001031, A002372, A007414
primes, differences between: A001223*, A007921*, A030173*, A037201
primes, differences between: see also <a href="Sindx_Pri.html#gaps">primes, gaps between</a>
primes, dihedral calculator: A038136
primes, dihedral palindromic: A048662
primes, dividing n: A001221*, A001222*, A006530*, A046660
primes, doubled: A001747, A005602, A005603
primes, duodecimal: A006687
primes, Euclid-Pocklington: A053341*
primes, Euclidean: A007996
primes, even: A001747
primes, Fermat, generalized, see primes, generalized Fermat
primes, Fermat, generalized: A056993* A005574 A000068 A006314 A006313 A006315 A006316 A056994 A056995 A057465 A057002 A088361 A088362
primes, Fermat: A019434*, A050922
primes, Fermat: see also A093625, A138083, A171381
primes, Fibonacci numbers: A001605*, A005478*
primes, final digits of: A007652
primes, fortunate, A005235
primes, from Euclid's proof: A000945*, A000946*
primes, gaps between , <a NAME="gaps">sequences related to (start):</a>
primes, gaps between, A001223*, A007921*, A030173*, A037201, A023200
primes, gaps between, A001359, A006512, A077800, A001097, A049591, A124582-A124596
primes, gaps between, A031924 A031925 A031926 A031927 A031928 A031929 A031930 A031931 A031932 A031933 A031934 A031935 A031936 A031937 A031938 A031939
primes, gaps between, LCM of: A080374 A080375 A080376 A083273 A083552 A083551
primes, gaps between, records for: A000101* (upper end), A002386* (lower end), A005250* (gaps)
primes, gaps between, see also: A005669, A002540, A000230, A000232, A001549, A001632
primes, gaps between, see also: primes, differences between
primes, gaps between|, <a NAME="gaps_end">sequences related to (start):</a>
primes, generalized Fermat: A006686, A078902, A090874, A100266, A100267, A123646
primes, generated by polynomials: see primes, produced by polynomials
primes, Germain: see primes, Sophie Germain
primes, good: A046869, A028388
primes, half-quartan: A002646
primes, happy: A035497
primes, Higgs: A007459
primes, home, see also A048985, A064841
primes, home: A037274* (base 10), A048986* and A064795 (base 2)
primes, Honaker: A033548
primes, iccanobiF: A036797
primes, in arithmetic progressions, <a NAME="primes_AP">sequences related to (start):</a>
primes, in arithmetic progressions: (01) Consider n-term arithmetic progressions (APs) of primes, i, i+d, i+2d, ..., i+(n-1)d. We can minimize (a) the first term i, (b) the common difference d, or (c) the last term, l=i+(n-1)d.  This gives rise to 12 sequences since for each problem we can list the values of i, d, l, and we can list the progressions as the rows of a triangle:
primes, in arithmetic progressions: (02) problem (a) i: A007918* (assuming k-tuple cojecture), d: A061558, l: A120302, triangle: A130791
primes, in arithmetic progressions: (03) problem (b) i: A033189, d: A033188*, l: A113872, triangle: A133276
primes, in arithmetic progressions: (04) problem (c) i: A113827, d: A093364, l: A005115*, triangle: A133277
primes, in arithmetic progressions: (05) If we take the initial value to be the n-th prime (A000040) the the sequences are: d: A088430, l: A113834, triangle: A133278
primes, in arithmetic progressions: (06) One may also ask for n consecutive primes in arithmetic progression: this gives A006560.
primes, in arithmetic progressions: (07) One may also consider n consecutive numbers in arithmetic progression having the same prime signature, and ask the same questions. This gives the following sequences:
primes, in arithmetic progressions: (08) problem (a) i: A133279, d: A113461, l: A127781, triangle: A113460
primes, in arithmetic progressions: (09) problem (b) i: A034173, d: the all-ones sequence A000012, l: A034174, triangle: A083785
primes, in arithmetic progressions: (10) problem (c) i: A087308, d: A087310, l: A133280, triangle: A086786
primes, in arithmetic progressions: (11) One may also ask for n consecutive numbers with the same prime signature: this gives sequences A034173, A034174, A083785 again. See also A087307.
primes, in arithmetic progressions: (12) See also A031217 A033168 A033290 A033446 A033447 A033448 A033449 A033450
primes, in arithmetic progressions: (13) See also A033451 A035050 A035089 A035091 A035092 A035093 A035094 A035095 A035096 A047980 A047981 A047982
primes, in arithmetic progressions: (14) See also A052239 A052242 A052243 A053647 A054203 A057324 A057325 A057326 A057327 A057328 A057329 A057330
primes, in arithmetic progressions: (15) See also A057331 A057778 A057874 A058252 A058323 A058362 A059044
primes, in arithmetic progressions| <a NAME="primes_AP_end">sequences related to (start):</a>
primes, in decimal expansion of Pi: A005042
Primes, in intervals, A007491
Primes, in number fields, A003631, A003625, A003628, A003630, A003632, A003626
Primes, in residue classes, A003627, A002313, A003629, A002145, A007520, A002515, A007528, A002144, A007521, A002476, A001132, A007522, A007519
Primes, in sequences, A003032, A003033, A002072
Primes, in ternary, A001363
primes, in various ranges , <a NAME="primepop">sequences related to (start):</a>
primes, in various ranges: (1) A003604 A006879 A006880 A007053 A007508 A033843 A035533 A036351 A036386 A039506 A039507
primes, in various ranges: (2) A040014 A049035 A049040 A050251 A050258 A050986 A050987 A052130 A055206 A055552 A055683 A055728
primes, in various ranges: (3) A055729 A055730 A055731 A055732 A055737 A055738 A057573 A057978 A058191 A058247 A058248 A060969
primes, in various ranges: (4) A060970 A060971 A063501 A064151 A066265 A066873 A071973
primes, in various ranges: (5) A091644 A091645 A091646 A091647 A091705 A091706 A091707 A091708 A091709 A091710
primes, in various ranges: (6) A091634 A091635 A091636 A091637 A091638 A091639 A091640 A091641 A091642 A091643
primes, in various ranges|, <a NAME="primepop_end">sequences related to (start):</a>
Primes, inert, A003631, A003625, A003628, A003630, A003632, A003626
primes, irregular: A000928*, A061576*
Primes, isolated, A007510
primes, isolated: A039818
Primes, largest, A006530, A006990, A007014, A002374, A003618
primes, left-truncatable: see <a href="Sindx_Tri.html#tprime">truncatable primes</a>
primes, lonely: A023186, A023187, A023188
primes, long period: A006883*
primes, Lucas numbers: A001606*, A005479*
primes, Lucasian: A002515*
primes, Mersenne: A000668* (primes of form 2^p-1), A000043* (p values)
primes, Mills's: A051254*
primes, minus a constant: A000040*, A014689, A014692, A040976.
primes, multiplicative and additive: A046713
primes, multiplicative: A046703
primes, next: A007918
primes, number of less than k^n: A007053, A055729, A086680, A055730, A055731, A055732, A086681, A086682, A006880, A058247, A058248, A058191.
primes, number of less than n*10^k: (1) A000720*, A038801, A028505, A038812, A038813, A038814, A038815, A038816, A038817, A038818, A038819,
primes, number of less than n*10^k: (2) A038820, A038821, A038822, A080123, A080124, A080125, A080126, A080127, A080128, A080129, A116356.
primes, octavan: A006686
primes, of a particular form, number that are less than or equal to 10^n: A091115 A091116 A091117 A091119-A091129 A091099 A091098 A006880 A007508
primes, of form k*n! +- 1: (1) A002981, A002982, A051915, A076133, A076679, A076134, A076680, A099350, A076681, A099351,
primes, of form k*n! +- 1: (2) A076682, A180627, A076683, A180628, A180625, A180629, A180626, A180630, A126896, A180631.
primes, of form n! +- 1: A002981, A002982
primes, of form x^2 + kxy + y^2: (1) A007519 A007645 A033212 A033215 A038872 A068228 A107008 A107008 A107145 A107152 A139492 A139493
primes, of form x^2 + kxy + y^2: (2) A139493 A139494 A139495 A139496 A139497 A139498 A139499 A139500 A139501 A139502 A139503 A139504
primes, of form x^2 + kxy + y^2: (3) A139505 A139506 A139507 A139508 A139509 A139510 A139511 A139512
primes, of form x^2+27y^2: A014752, A040028
primes, of form x^2+y^2: A002313*, A002331, A002330, A002144
primes, order of: A049076, A007097
primes, palindromic: A002385*, A007500, A007616
primes, palindromic: see also (1) A016041 A029971 A029972 A029973 A029974 A029975 A029976 A029977 A029978 A029979 A029980 A029981 A029982 A029732
primes, palindromic: see also (2) A046942 A046941 A50236 A050239 A039954 A118064 A119351 A016115 A050251 A050683
primes, palindromic: see also <a href="Sindx_Pac.html#palindromes">palindromic primes</a>
primes, period of reciprocal of, see <a href="Sindx_1.html#1overn">1/p</a>
primes, Pierpont: A005109
Primes, primitive roots of, A001918, A002233, A002199, A002231, A001122, A007348, A003147, A001913, A001123, A007349, A001124, A001125, A001126
primes, produced by polynomials, etc.: A050268, A121887, A139414, A033189
Primes, products of, A007467, A006881, A006094, A007304
primes, products of: A000040 (1), A001358 (2), A014612 (3), A014613 (4)
primes, pseudo: see <a href="Sindx_Ps.html#pseudoprimes">pseudoprimes</a>
primes, quadratic form, discriminant -104: A107132, A033218
primes, quadratic form, discriminant -108: A014752
primes, quadratic form, discriminant -112: A107133, A107134
primes, quadratic form, discriminant -116: A033219
primes, quadratic form, discriminant -11: A056874, A106857
primes, quadratic form, discriminant -120: A107135, A107136, A107137, A033220
primes, quadratic form, discriminant -124: A033221
primes, quadratic form, discriminant -128: A105389
primes, quadratic form, discriminant -12: A002476
primes, quadratic form, discriminant -132: A107138, A033222
primes, quadratic form, discriminant -136: A107139, A033223
primes, quadratic form, discriminant -140: A107140, A033224
primes, quadratic form, discriminant -144: A107141, A107142
primes, quadratic form, discriminant -148: A033225
primes, quadratic form, discriminant -152: A107143, A033226
primes, quadratic form, discriminant -156: A033227
primes, quadratic form, discriminant -15: A033212, A106858, A106859, A106860, A106861
primes, quadratic form, discriminant -160: A107144, A107145
primes, quadratic form, discriminant -164: A033228
primes, quadratic form, discriminant -168: A107146, A107147, A107148, A033229
primes, quadratic form, discriminant -16: A002144, A002313
primes, quadratic form, discriminant -172: A033230
primes, quadratic form, discriminant -176: A107149, A107150
primes, quadratic form, discriminant -180: A107151, A107152
primes, quadratic form, discriminant -184: A107153, A033231
primes, quadratic form, discriminant -188: A033232
primes, quadratic form, discriminant -192: A107154
primes, quadratic form, discriminant -196: A107155
primes, quadratic form, discriminant -19: A106862, A106863
primes, quadratic form, discriminant -200: A107156, A107157
primes, quadratic form, discriminant -204: A107158, A033233
primes, quadratic form, discriminant -208: A107159, A107160
primes, quadratic form, discriminant -20: A033205, A106864, A106865
primes, quadratic form, discriminant -212: A033234
primes, quadratic form, discriminant -216: A107161, A107162
primes, quadratic form, discriminant -220: A033235
primes, quadratic form, discriminant -224: A107163, A107164
primes, quadratic form, discriminant -228: A107165, A033236
primes, quadratic form, discriminant -232: A107166, A033237
primes, quadratic form, discriminant -236: A033238
primes, quadratic form, discriminant -23: A106866, A106867, A106868, A106869
primes, quadratic form, discriminant -240: A107167, A107168, A107169
primes, quadratic form, discriminant -244: A033239
primes, quadratic form, discriminant -248: A107170, A033240
primes, quadratic form, discriminant -24: A033199, A084865
primes, quadratic form, discriminant -256: A014754
primes, quadratic form, discriminant -260: A107171, A033241
primes, quadratic form, discriminant -264: A107172, A107173, A107174, A033242
primes, quadratic form, discriminant -268: A033243
primes, quadratic form, discriminant -272: A107175, A107176
primes, quadratic form, discriminant -276: A107177, A033244
primes, quadratic form, discriminant -27: A002476, A106870
primes, quadratic form, discriminant -280: A107178, A107179, A107180, A033245
primes, quadratic form, discriminant -284: A033246
primes, quadratic form, discriminant -288: A107181
primes, quadratic form, discriminant -28: A033207
primes, quadratic form, discriminant -292: A033247
primes, quadratic form, discriminant -296: A107182, A033248
primes, quadratic form, discriminant -300: A107183, A107184
primes, quadratic form, discriminant -304: A107185, A107186
primes, quadratic form, discriminant -308: A107187, A033249
primes, quadratic form, discriminant -312: A107188, A107189, A107190, A033250
primes, quadratic form, discriminant -316: A033251
primes, quadratic form, discriminant -31: A033221, A106871, A106872, A106873, A106874
primes, quadratic form, discriminant -320: A107191, A107192
primes, quadratic form, discriminant -324: A107193
primes, quadratic form, discriminant -328: A107194, A033252
primes, quadratic form, discriminant -32: A007519, A007520, A106875, A106876
primes, quadratic form, discriminant -332: A033253
primes, quadratic form, discriminant -336: A107195, A107196, A107197, A107198
primes, quadratic form, discriminant -340: A107199, A033254
primes, quadratic form, discriminant -344: A107200, A033255
primes, quadratic form, discriminant -348: A033256
primes, quadratic form, discriminant -352: A107201, A107202
primes, quadratic form, discriminant -356: A033257
primes, quadratic form, discriminant -35: A106877, A106878, A106879, A106880, A106881
primes, quadratic form, discriminant -360: A107203, A107204, A107205, A107206
primes, quadratic form, discriminant -364: A107207, A033258
primes, quadratic form, discriminant -368: A107208, A107209
primes, quadratic form, discriminant -36: A040117, A068228, A106882
primes, quadratic form, discriminant -372: A107210, A033202
primes, quadratic form, discriminant -376: A107211, A033204
primes, quadratic form, discriminant -380: A033206
primes, quadratic form, discriminant -384: A107212, A107213
primes, quadratic form, discriminant -388: A033208
primes, quadratic form, discriminant -392: A107214, A107215
primes, quadratic form, discriminant -396: A107216, A107217
primes, quadratic form, discriminant -39: A033227, A106883, A106884, A106885, A106886, A106887, A106888
primes, quadratic form, discriminant -3: A007645
primes, quadratic form, discriminant -400: A107218, A107219
primes, quadratic form, discriminant -40: A033201, A106889
primes, quadratic form, discriminant -43: A106890, A106891
primes, quadratic form, discriminant -44: A033209, A106282, A106892, A106893
primes, quadratic form, discriminant -47: A033232, A106894, A106895, A106896, A106897, A106898, A106899, A106900
primes, quadratic form, discriminant -48: A068229
primes, quadratic form, discriminant -4: A002313
primes, quadratic form, discriminant -51: A106901, A106902, A106903, A106904
primes, quadratic form, discriminant -52: A033210, A106905, A106906
primes, quadratic form, discriminant -55: A033235, A106907, A106908, A106909, A106910, A106911, A106912, A106913
primes, quadratic form, discriminant -56: A033211, A106914, A106915, A106916, A106917
primes, quadratic form, discriminant -59: A106918, A106919, A106920, A106921, A106922
primes, quadratic form, discriminant -63: A106923, A106924, A106925, A106926, A106927, A106928, A106929, A106930
primes, quadratic form, discriminant -64: A007521, A106931
primes, quadratic form, discriminant -67: A106932, A106933
primes, quadratic form, discriminant -68: A033213, A106934, A106935, A106936, A106937, A106938
primes, quadratic form, discriminant -71: A033246, A106939, A106940, A106941, A106942, A106943, A106944, A106945, A106946, A106947, A106948
primes, quadratic form, discriminant -72: A106949, A106950
primes, quadratic form, discriminant -75: A033212, A106951, A106952
primes, quadratic form, discriminant -76: A033214, A106953, A106954, A106955
primes, quadratic form, discriminant -79: A033251, A106956, A106957, A106958, A106959, A106960, A106961, A106962
primes, quadratic form, discriminant -7: A045373, A106856
primes, quadratic form, discriminant -80: A047650, A106963, A106964, A106965
primes, quadratic form, discriminant -83: A106966, A106967, A106968, A106969, A106970
primes, quadratic form, discriminant -84: A033215, A102271, A102273, A106971, A106972, A106973, A106974
primes, quadratic form, discriminant -87: A033256, A106975, A106976, A106977, A106978, A106979, A106980, A106981, A106982, A106983
primes, quadratic form, discriminant -88: A033216, A106984
primes, quadratic form, discriminant -8: A033203
primes, quadratic form, discriminant -91: A106985, A106986, A106987, A106988, A106989
primes, quadratic form, discriminant -92: A033217
primes, quadratic form, discriminant -95: A033206, A106990, A106991, A106992, A106993, A106994, A106995, A106996, A106997, A106998, A106999, A107000, A107001
primes, quadratic form, discriminant -96: A107002, A107003, A107004, A107005, A107006, A107007, A107008
primes, quadratic form, discriminant -99: A107009, A107010, A107011, A107012, A107013
primes, quadratic form, discriminant 1020: A139512
primes, quadratic form, discriminant 117: A139494
primes, quadratic form, discriminant 140: A139495
primes, quadratic form, discriminant 165: A139496
primes, quadratic form, discriminant 21: A139492
primes, quadratic form, discriminant 221: A139497
primes, quadratic form, discriminant 285: A139498
primes, quadratic form, discriminant 357: A139499
primes, quadratic form, discriminant 396: A139500
primes, quadratic form, discriminant 437: A139501
primes, quadratic form, discriminant 480: A139502
primes, quadratic form, discriminant 525: A139503
primes, quadratic form, discriminant 572: A139504
primes, quadratic form, discriminant 621: A139505
primes, quadratic form, discriminant 672: A139506
primes, quadratic form, discriminant 725: A139507
primes, quadratic form, discriminant 77: A139493
primes, quadratic form, discriminant 780: A139508
primes, quadratic form, discriminant 837: A139509
primes, quadratic form, discriminant 896: A139510
primes, quadratic form, discriminant 957: A139511
Primes, quadratic partitions of, A002973, A002972
Primes, quadratic residues of, A002223, A002224, A002225, A002226, A002228, A002227
primes, quartan: A002645
primes, quintan: A002649, A002650
primes, reciprocals of, periods: see <a href="Sindx_1.html#1overn">1/p</a>
primes, regular: A007703*
Primes, represented by quadratic forms, A002496, A007645, A002383, A007490, A002327, A005473, A005471, A007635, A007639, A007637, A007641, A005846
primes, repunit: A004022*, A004023*
primes, right-truncatable: see <a href="Sindx_Tri.html#tprime">truncatable primes</a>
primes, safe: A005385*, A051900, A051901, A051902
primes, sextan: A002647
primes, short period: A006559*
Primes, single, A007510
primes, Sophie Germain: A005384
Primes, special sequences of, A001259, A001275
Primes, square roots of, A000006
primes, Stern: A042978
primes, strobogrammatic: A007597, A018847
primes, strong: A051634
primes, sum of the first k^n primes, k=2,3,5,6,7,10: A099825, A099826, A113633, A113634, A113635, A099824
Primes, sums of digits of, A007605
Primes, sums of, A007610, A001414, A007504, A007468, A002373, A001043, A001172
Primes, supersingular, A006962
primes, that divide sum of all primes <= p: A007506, A024011, A028581, A028582
Primes, to odd powers only, A002035
primes, transformed by cellular automata: A093510 A093511 A093512 A093513 A093514 A093515 A093516 A093517
primes, transforms of, A007442, A007444, A007447, A007441, A007445, A007296, A007446
primes, truncatable: see <a href="Sindx_Tri.html#tprime">truncatable primes</a>
primes, truncated: see <a href="Sindx_Tri.html#tprime">truncatable primes</a>
primes, twin primes conjecture: see also A093483
primes, twin: A001359*, A014574*, A006512*, A001097, A077800
primes, twin: see also <a href="Sindx_Tu.html#twin_primes">twin primes constant</a>
primes, twin: see also A005597, A007508, A033843, A036061, A036062, A036063
primes, undulating: A039944
primes, various subsets in range 2^n,2^(n+1), <a NAME="primesubsetpop2">sequences related to (start):</a> (numbers in parentheses give the primes whose occurrences are being counted)
primes, various subsets in range 2^n,2^(n+1): (1) A036378* (A000040), A095005 (A027697), A095006 (A027699), A095007 (A002144)
primes, various subsets in range 2^n,2^(n+1): (2) A095008 (A002145), A095009 (A007519), A095010 (A007520), A095011 (A007521), A095012 (A007522), A095013 (A001132), A095014 (A003629)
primes, various subsets in range 2^n,2^(n+1): (3) A095015 (A002476), A095016 (A007528), A095017 (A001359), A095018 (A066196), A095019 (A095071), A095020 (A095070), A095021 (A030430)
primes, various subsets in range 2^n,2^(n+1): (4) A095022 (A030432), A095023 (A030431), A095024 (A030433), A095052 (A095072), A095053 (A095073), A095054 (A095074), A095055 (A095075)
primes, various subsets in range 2^n,2^(n+1): (5) A095056 (A081091), A095057 (A095077), A095058 (A095078), A095059 (A095079), A095060 (A095080), A095061 (A095081), A095062 (A095082)
primes, various subsets in range 2^n,2^(n+1): (6) A095063 (A095083), A095064 (A095084), A095065 (A095085), A095066 (A095086), A095067 (A095087), A095068 (A095088), A095069 (A095089)
primes, various subsets in range 2^n,2^(n+1): (7) A095092 (A095102), A095093 (A095103), A095094 (A080114), A095095 (A080115)
primes, various subsets in range 2^n,2^(n+1)| <a NAME="primesubsetpop2_end">sequences related to (start):</a> (numbers in parentheses give the primes whose occurrences are being counted)
primes, weak: A051635
primes, weakly prime numbers: A050249
primes, which are average of their neighbors: A006562
primes, whose reversal is a square, A007488
primes, Wilson: A007540*
Primes, with consecutive digits, A006510, A006055
primes, with embedded primes (permutation): A039993, A080603, A080608. 
primes, with embedded primes (substring) (1): A033274, A034844, A039992, A039994, A039996, A039998, A045719, A079397, A092621, A092622,
primes, with embedded primes (substring) (2): A092623, A092628, A109066, A134596, A137812, A152313, A152426, A152427, A155024, A168169,
primes, with embedded primes (substring) (3): A178596, A178597, A179336, A179909, A179910, A179911, A179912, A179913, A179914, A179915,
primes, with embedded primes (substring) (4): A179916, A179917, A179918, A179919, A179920, A179922, A179924*.
primes, with first digit 1 (or 2, 3, etc.): A045707, A045708, A045709, etc.
Primes, with large least nonresidues, A002225, A002226, A002228, A002227
Primes, with prime subscripts, A006450
primes, Woodall: A002234*, A050918*
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, <a NAME="riesel">sequences related to (start):</a>
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (01): A000043 A001770 A001771 A001772 A001773 A001774 A001775 A002235 A002236 A002237 A002238 A002240
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (02): A002242 A002253 A002254 A002256 A002258 A002259 A002261 A002269 A002274 A032353 A032356 A032359
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (03): A032360 A032361 A032362 A032363 A032364 A032365 A032366 A032367 A032368 A032370 A032371 A032372
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (04): A032373 A032374 A032375 A032376 A032377 A032379 A032380 A032381 A032382 A032383 A032384 A032385
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (05): A032386 A032387 A032388 A032389 A032390 A032391 A032392 A032393 A032394 A032395 A032396 A032397
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (06): A032398 A032399 A032400 A032401 A032402 A032403 A032404 A032405 A032406 A032407 A032408 A032409
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (07): A032410 A032411 A032412 A032413 A032414 A032415 A032416 A032417 A032418 A032419 A032420 A032421
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (08): A032422 A032423 A032424 A032425 A032453 A032454 A032455 A032456 A032457 A032458 A032459 A032460
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (09): A032461 A032462 A032464 A032465 A032466 A032467 A032468 A032469 A032470 A032471 A032472 A032473
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (10): A032474 A032475 A032476 A032477 A032478 A032479 A032480 A032481 A032482 A032483 A032484 A032485
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (11): A032486 A032487 A032488 A032489 A032490 A032491 A032492 A032493 A032494 A032495 A032496 A032497
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (12): A032498 A032499 A032500 A032501 A032502 A032503 A032504 A032507 A046758 A050537 A050538 A050539
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (13): A050540 A050541 A050543 A050544 A050545 A050546 A050547 A050549 A050550 A050551 A050552 A050553
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (14): A050554 A050555 A050556 A050557 A050558 A050559 A050560 A050561 A050562 A050563 A050564 A050565
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (15): A050566 A050567 A050568 A050569 A050570 A050571 A050572 A050573 A050574 A050575 A050576 A050577
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (16): A050578 A050579 A050580 A050581 A050582 A050583 A050584 A050585 A050586 A050587 A050588 A050589
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (17): A050590 A050591 A050592 A050593 A050594 A050595 A050596 A050597 A050598 A050599 A050616 A050617
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (18): A050618 A050619 A050830 A050831 A050832 A050833 A050834 A050835 A050836 A050837 A050838 A050839
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (19): A050840 A050841 A050842 A050843 A050844 A050845 A050846 A050847 A050848 A050849 A050850 A050851
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (20): A050852 A050853 A050854 A050855 A050856 A050857 A050858 A050859 A050860 A050861 A050862 A050863
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (21): A050864 A050865 A050866 A050867 A050868 A050869 A050877 A050878 A050879 A050880 A050881 A050882
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (22): A050883 A050884 A050885 A050886 A050887 A050888 A050889 A050890 A050891 A050892 A050893 A050894
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (23): A050895 A050896 A050897 A050898 A050899 A050900 A050901 A050902 A050903 A050904 A050905 A050906
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (24): A050907 A050908 A053345 A053346 A053348 A053349 A053350 A053351 A053352 A053353 A053354 A053355
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (25): A053356 A053357 A053358 A053359 A053360 A053361 A053362 A053363 A053364 A053365 A053366
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (26): A007505 A050522 A050523 A050524 A050525 A050526 A050527 A050528 A002255 A050413
primes: values of n such that k*2^n-1 (or k*2^n+1) is prime| <a NAME="riesel_end">sequences related to (start):</a>
Primes:: A005361, A002200, A002038, A006093, A007445, A007296, A001259, A006450, A001275
primes|, <a NAME="primes_end">sequences related to (start):</a>
primeth recurrence: A007097*
primitive (1):: A000020, A003050, A002233, A002199, A000019, A005992, A001578, A006246, A006245, A002589
primitive (2):: A001122, A007348, A006248, A006991, A006039, A006036, A001913, A001123, A007627, A006576, A007349, A001124, A001125, A002975, A001126
Primitive factors, A002185, A007138, A002184
primitive polynomials: see also <a href="Sindx_Tri.html#trinomial">trinomials over GF(2)</a>
primitive roots, <a NAME="primitive_roots">sequences related to (start):</a>
primitive roots, primes by: see <a href="Sindx_Pri.html#primes_root">primes by primitive root</a>
primitive roots: A060749*, A001918*, A002199, A002229, A002230, A002231, A029932, A071894
primitive roots| <a NAME="primitive_roots_end">sequences related to (start):</a>
primorial numbers, <a NAME="primorial_numbers">sequences related to (start):</a>
primorial numbers: A002110*, A034386*
primorial numbers: see also A056113, A056129, A006862, A057588, A129912
primorial primes: A005234*, A014545*, A018239*, A006794*, A057704*, A057705*
primorial| numbers, <a NAME="primorial_numbers_end">sequences related to (start):</a>
principal character: A005368
prism numbers: A005914, A005915, A005919, A005920
Pro DIVIDER
probability difference equation: A001949
probability orderings: A005806
problems to work on, see <a href="Sindx_Se.html#extend">sequences that need extending</a>
problimes: A003066, A003067, A003068
product of digits of n: A007954
product of digits of primes, see: <a href="Sindx_Pri.html#primes">prime, smallest whose product of digits is (something)</a>
product of earlier terms, not, see: <a href="Sindx_Sk.html#smallest_number_not">smallest number not a product of earlier terms</a>
product_{k >= 1} (1-x^k)^m  , <a NAME="1mxtok">sequences from (start):</a>
product_{k >= 1} (1-x^k)^m (1): m=1..10: A010815 (Euler's pentagonal theorem), A002107 A010816 A000727 A000728 A000729 A000730 A000731 A010817
product_{k >= 1} (1-x^k)^m (2): m=11..20: A010819 A000735 A010820 A010821 A010822 A000739 A010823 A010824 A010825 A010826
product_{k >= 1} (1-x^k)^m (3): m=21..30: A010827 A010828 A010829 A000594 (the Ramanujan tau function), A010830 A010831 A010832 A010833 A010834 A010835
product_{k >= 1} (1-x^k)^m (4): A010836 (m=31), A010837 (m=32), A010840 (m=40), A010838 (m=44), A010839 (m=48), A010841 (m=64)
product_{k >= 1} (1-x^k)^m (5): m=-1..-10: A000041 (partition numbers), A000712 A000716 A023003 A023004 A023005 A023006 A023007 A023008 A023009
product_{k >= 1} (1-x^k)^m (6): m=-11..-20: A023010 A005758 A023011 A023012 A023013 A023014 A023015 A023016 A023017 A023018
product_{k >= 1} (1-x^k)^m (7): A023019 (m=-21), A023020 (m=-22), A023021 (m=-23), A006922 (m=-24), A082556 (m=-30), A082557 (m=-32), A082558 (m=-48), A082559 (m=-64)
product_{k >= 1} (1-x^k)^m| , <a NAME="1mxtok_end">sequences from (start):</a>
profiles: A118131
projective planes of order n: A001231*
projective planes, maps on: A007137
projective planes, permanent of: A000794
projective planes: see also <a href="Sindx_Ro.html#rooted">rooted trees, projective plane</a>
projective planes: see also <a href="Sindx_Tra.html#trees">trees, projective plane</a>
promic numbers: see pronic numbers
pronic numbers: A002378*
Proth numbers: A016014*
proton mass: A003677*
proton-to-electron mass ratio: A005601*
Prufer codes for trees: A056096, A056098
Ps DIVIDER
pseudo Q-numbers: A038135
pseudo-bricks: A006291, A006293, A006293
pseudo-Galois numbers: A028666 A028668 A028670 A028671 A028672 A028674 A028676 A028677 A028678 A028680 A028682 A028683 A028684 A028686 A028690
pseudo-lines: A006247, A006248
pseudo-powers to base 3: A016057, A016058
pseudo-primes, see <a href="Sindx_Ps.html#pseudoprimes">pseudoprimes</a>
pseudo-random numbers:  <a NAME="PRN">sequences related to (start):</a>
pseudo-random numbers: (1) A061364 A096554 A096550 A096551 A096552 A096553 A096554 A096555 A096556 A096557 A096558 A096559
pseudo-random numbers: (2) A096560 A096561 A084275 A084276 A084277
pseudo-random numbers|  <a NAME="PRN_end">sequences related to (start):</a>
pseudo-Smarandache numbers: A011772
pseudo-squares: A002189*, A045535
pseudo-wild numbers: see <a href="Sindx_Wi.html#wild">wild numbers</a>
pseudoperfect numbers: A005835*, A006036, A035480
pseudoprimes  , <a NAME="pseudoprimes">sequences related to (start):</a>
pseudoprimes (01): A001262 A001567 A005845 A005935 A005936 A005937 A005938 A005939 A006935 A006970 A007011 A007535
pseudoprimes (02): A013998 A018187 A020136 A020137 A020138 A020139 A020140 A020141 A020142 A020143 A020144 A020145
pseudoprimes (03): A020146 A020147 A020148 A020149 A020150 A020151 A020152 A020153 A020154 A020155 A020156 A020157
pseudoprimes (04): A020158 A020159 A020160 A020161 A020162 A020163 A020164 A020165 A020166 A020167 A020168 A020169
pseudoprimes (05): A020170 A020171 A020172 A020173 A020174 A020175 A020176 A020177 A020178 A020179 A020180 A020181
pseudoprimes (06): A020182 A020183 A020184 A020185 A020186 A020187 A020188 A020189 A020190 A020191 A020192 A020193
pseudoprimes (07): A020194 A020195 A020196 A020197 A020198 A020199 A020200 A020201 A020202 A020203 A020204 A020205
pseudoprimes (08): A020206 A020207 A020208 A020209 A020210 A020211 A020212 A020213 A020214 A020215 A020216 A020217
pseudoprimes (09): A020218 A020219 A020220 A020221 A020222 A020223 A020224 A020225 A020226 A020227 A020228 A020229
pseudoprimes (10): A020230 A020231 A020232 A020233 A020234 A020235 A020236 A020237 A020238 A020239 A020240 A020241
pseudoprimes (11): A020242 A020243 A020244 A020245 A020246 A020247 A020248 A020249 A020250 A020251 A020252 A020253
pseudoprimes (12): A020254 A020255 A020256 A020257 A020258 A020259 A020260 A020261 A020262 A020263 A020264 A020265
pseudoprimes (13): A020266 A020267 A020268 A020269 A020270 A020271 A020272 A020273 A020274 A020275 A020276 A020277
pseudoprimes (14): A020278 A020279 A020280 A020281 A020282 A020283 A020284 A020285 A020286 A020287 A020288 A020289
pseudoprimes (15): A020290 A020291 A020292 A020293 A020294 A020295 A020296 A020297 A020298 A020299 A020300 A020301
pseudoprimes (16): A020302 A020303 A020304 A020305 A020306 A020307 A020308 A020309 A020310 A020311 A020312 A020313
pseudoprimes (17): A020314 A020315 A020316 A020317 A020318 A020319 A020320 A020321 A020322 A020323 A020324 A020325
pseudoprimes (18): A020326 A045535 A047713 A048950
pseudoprimes to base 2, or Sarrus numbers: A001567*
pseudoprimes, Carmichael numbers: A002997*
pseudoprimes, Euler-Jacobi: A047713*
pseudoprimes, Lucas: A005845
pseudoprimes, Miller-Rabin primality test: A006945
pseudoprimes, see also <a href="Sindx_Ca.html#Carmichael">Carmichael numbers</a>
pseudoprimes, strong, to base 2: A001262*
pseudoprimes| , <a NAME="pseudoprimes_end">sequences related to (start):</a>
psi function: A001615
puzzle sequences , <a NAME="puzzle_sequences">sequences related to (start):</a>
puzzle sequences: A006567 A059999 A064438
puzzle sequences|, <a NAME="puzzle_sequences_end">sequences related to (start):</a>
pyramidal numbers  , <a NAME="pyramidal_numbers">sequences related to (start):</a>
pyramidal numbers (1): A000292* A000330 A001296 A002411 A002412 A002413 A002414
pyramidal numbers (2): A002415 A005585 A005918 A007584 A007585 A007586 A007587
pyramidal numbers (3): A014797 A014798 A014799 A014800 A014801 A014803
pyramidal numbers (4): A015221 A015222 A015223 A015224 A015225 A015226 A039596
pyramidal numbers|, <a NAME="pyramidal_numbers_end">sequences related to (start):</a>
Pythagoras' theorem:: A001652, A004253, A004254, A001653
Pythagorean triples:  <a NAME="PyTrip">sequences related to (start):</a>
Pythagorean triples: A006593 A009096 A010814 A098714 A099829 A099830 A099831 A099832 A099833
Pythagorean triples|  <a NAME="PyTrip_end">sequences related to (start):</a>
Python examples, <a NAME="Python">sequences related to (start):</a>
Python examples: A001047, A005150, A071531, A048927, A086638
Python examples| <a NAME="Python_end">sequences related to (start):</a>
Qua DIVIDER
q-factorials: see <a href="Sindx_Fa.html#factorial">"factorial numbers, q-factorials"</a>
Q-graphs: A007169, A007170, A007171
quadrangulations: A001506, A001507, A001508
quadratic character, sequences with prescribed: A001986, A001988, A001990, A001992
quadratic fields, <a NAME="quadfield">sequences related to (start):</a>
quadratic fields, class number of sqrt(-n): A000924
quadratic fields, discriminant of sqrt(-n): A006555, A006557
quadratic fields, Euclidean: A003174* (real), A048981 (real and imaginary), A003246* (discriminants)
quadratic fields, genera of: A003640, A003641, A003642, A003643
quadratic fields, imaginary, by class numbers:  1: A003173; 2: A005847 and A014603; 3: A006203; 4: A046085 and A013658; 5: A046002; 6: A055109 and A046003; 7: A046004; 8: A055110 and A046005; 9: A046006; 10: A055111 and A046007
quadratic fields, imaginary, by class numbers: 11-20: A046008-A046020
quadratic fields, imaginary, by class numbers: PARI program for computing: A005847
quadratic fields, imaginary, by class numbers: see also the entry under: <a href="Sindx_Di.html#discriminants">discriminants of imaginary quadratic fields with class number (negated)</a>
quadratic fields, real, by class numbers: 1: A003172*; 2: A029702*
quadratic fields, real, discriminants: A037449
quadratic fields, see also <a href="Sindx_Cl.html#CLASS">class numbers</a>
quadratic fields, see also A001991, A005474, A001985, A002141, A001989, A001987
quadratic fields, simple: A003172* (real), A003173* (imaginary), A061574 (both)
quadratic fields, totally real of degree n: A006554*
quadratic fields, unique factorization domains: A003172* (real), A003173* (imaginary), A061574 (both)
quadratic fields| <a NAME="quadfield_end">sequences related to (start):</a>
quadratic forms , <a NAME="quadform">sequences related to (start):</a>
quadratic forms, binary:: A006375, A000003, A006371, A006374
quadratic forms, extreme: A033689*
quadratic forms, genera of: A005141
quadratic forms, minimal norm of: see <a href="Sindx_Me.html#minimal_norm">minimal norm</a>
quadratic forms, one class per genus: A139827
quadratic forms, perfect: A004026*
quadratic forms, populations of , <a NAME="quadpop">sequences related to (start):</a>
quadratic forms, populations of: (1) A000024 A000049 A000050 A000067 A000072 A000074 A000075 A000076 A000077 A000205 A000286 A054150
quadratic forms, populations of: (2) A054151 A054152 A054153 A054157 A054159 A054161 A054162 A054163 A054164 A054165 A054166 A054167
quadratic forms, populations of: (3) A054169 A054171 A054173 A054175 A054176 A054177 A054178 A054179 A054180 A054182 A054184 A054186
quadratic forms, populations of: (4) A054187 A054188 A054189 A054191 A054193 A054194 A000018 A000021 A000047 A000286 A068785
quadratic forms, populations of: (5) A000690 A000691 A000692 A000693 A000694 A000709
quadratic forms, populations of|, <a NAME="quadpop_end">sequences related to (start):</a>
quadratic forms, ternary: A006376, A006377, A071136
quadratic forms, unimodular, see: <a href="Sindx_La.html#Lattices">lattices, unimodular</a>
quadratic forms|, <a NAME="quadform_end">sequences related to (start):</a>
Quadratic invariants:: A000807
quadratic nonresidues, consecutive: A002308*
quadratic residues, consecutive: A002307*
Quadrilaterals:: A002789, A005036, A002579, A002578
quadrinomial coefficients: A001919 A005190 A005718 A005719 A005720 A005721 A005723 A005724 A005725 A005726 A008287*
quadruple factorial numbers: A007662
quarter-squares: A002620*
quasi-amicable numbers: A003502*, A003503*, A005276*
quasi-orders: A006870*
quasigroups ,  <a NAME="quasigroups">sequences related to (start):</a>
quasigroups : A002860*, A057991*, A058171*
quasigroups, asymmetric: A057994*, A057998, A058172, A058173, A058174*, A058176
quasigroups, by idempotent: A058175*, A058176-A058178
quasigroups, commutative: A057992*, A058172, A058177, A089925
quasigroups, self-converse: A057993*, A057996, A058173, A058178
quasigroups, with identity: A000315, A057771*, A057996, A057997*, A057998, A089925
quasigroups: see also <a href="Sindx_La.html#Latin">Latin squares</a>
quasigroups|,  <a NAME="quasigroups_end">sequences related to (start):</a>
quaternions, Hurwitz, prime: A055669, A055670, A055671, A055672
Que DIVIDER
Quebbemann 32-dimensional lattice: A002272*
queens problem, <a NAME="queens_problem">sequences related to (start):</a>
queens problem: (1) A000170* A001366 A002562* A002563 A002564 A002565 A002566 A002567 A002568 A002968 A006317 A006717
queens problem: (2) A007630 A007631 A007705 A019317 A019318 A024915 A025603 A025604 A025605 A025606 A030117 A032522
queens problem: (3) A033148 A035005 A035291 A036464 A037009 A047659 A051566 A051567 A051568 A051569 A051570 A051571
queens problem: (4) A051906 A053994 A054500 A054501 A054502
queens problem| <a NAME="queens_problem_end">sequences related to (start):</a>
question mark function, see <a href="Sindx_Me.html#MinkowskiQ">Minkowski's question mark function</a>
Quet transform: A101387*, A100661, A100808
quilt, Mrs. Perkins's: A005670
Ra DIVIDER
R(n), or n reversed: A004086
r(n): A004018
rabbits, <a NAME="rabbits">sequences related to (start):</a>
rabbits, A000045*
rabbits, dying: A000044 A023434 A023435 A023436 A023437 A023438 A023439 A023440 A023441 A023442
rabbits| <a NAME="rabbits_end">sequences related to (start):</a>
races  , <a NAME="races">sequences related to (start):</a>
races (1): A007350, A007351, A007352, A007353, A007354, A007355, A038025, A038026, A038691, A053402,
races (2): A058376, A093180, A093181, A093182, A096452, A098033, A098044, A111744, A111745, A119498,
races (3): A121573, A125149, A130911, A132189, A156549, A156709, A156749, A158819, A160764, A171717,
races (4): A173026, A176028.
races (5): see also <a href="Sindx_Pri.html#prime_races">prime races</a>
races| , <a NAME="races_end">sequences related to (start):</a>
rad(n): A007947
RADD sequences (Reverse then add something), <a NAME="RADD">sequences related to (start):</a>
RADD sequences (Reverse then add something): see the web page <a href="a117831.txt">Sequences of RADD type</a>
RADD sequences : see also <a href="Sindx_K.html#Kaprekar_map">Kaprekar map sequences</a>
RADD sequences : see also <a href="Sindx_Ra.html#RATS">RATS sequences</a>
RADD sequences : see also <a href="Sindx_Res.html#RAA">Reverse and Add! sequences</a>
RADD sequences| (Reverse then add something), <a NAME="RADD_end">sequences related to (start):</a>
Radon function: see <a href="Sindx_Ho.html#Hurwitz_Radon">Hurwitz-Radon numbers</a>
Radon theorem: A002661
Ramanujan , <a NAME="Ramanujan">sequences related to (start):</a>
Ramanujan approximation: A000691
Ramanujan numbers tau(n): A000594*, A007659
Ramanujan's Lost Notebook:  <a NAME="RamLN">sequences related to (start):</a>
Ramanujan's Lost Notebook: (1) A000025 A006304 A006305 A006306 A007325 A050203 A053250 A053251 A053252 A053253 A053254 A053255
Ramanujan's Lost Notebook: (2) A053256 A053257 A053258 A053259 A053260 A053261 A053262 A053263 A053264 A053265 A053266 A053267
Ramanujan's Lost Notebook: (3) A053268 A053269 A053270 A053271 A053272 A053273 A053274 A053281 A053282 A053283 A053284 A055101
Ramanujan's Lost Notebook: (4) A055102 A055103 A055104
Ramanujan's Lost Notebook|  <a NAME="RamLN_end">sequences related to (start):</a>
Ramanujan|, <a NAME="Ramanujan_end">sequences related to (start):</a>
Ramsey numbers, <a NAME="Ramsey">sequences related to (start):</a>
Ramsey numbers: A000789 A000791* A003323 A004401 A006474 A006672 A120414* A059442
Ramsey numbers| <a NAME="Ramsey_end">sequences related to (start):</a>
RAND Corporation list of a million random digits: A002205
random numbers, <a NAME="random_numbers">sequences related to (start):</a>
random numbers: see also <a href="Sindx_Ps.html#PRN">pseudo-random sequences</a>
random numbers: see random sequences
random sequences: A002205*, A079365, A104183
random| numbers, <a NAME="random_numbers_end">sequences related to (start):</a>
Raney numbers: A062993, A079508
rapidly growing sequences: see: <a href="Sindx_Se.html#sequences_which_grow_too_rapidly">sequences which grow too rapidly to have their own entries</a>
rational numbers , <a NAME="rational">sequences related to (start):</a>
rational numbers, listings of all: A020652/A020653, A038566/A038567, A038568/A038569, A038566/A020653,  A113136/A113137
rational numbers: see also the separate <a href="frac.html">Index to Fractions</a>
rational numbers|, <a NAME="rational_end">sequences related to (start):</a>
Rational points on curves:: A005527, A005523, A005525, A005526
rationals, enumerating: A002487(n)/A002487(n+1)*, A038566*/A038567*, A038568*/A038569*, A020650*/A020651*, A020652*/A020653*
RATS: Reverse Add Then Sort, <a NAME="RATS">sequences related to (start):</a>
RATS: Reverse Add Then Sort: A004000*, A036839, A066710, A066711, A066713
RATS: see also <a href="Sindx_K.html#Kaprekar_map">Kaprekar map sequences</a>
RATS: see also <a href="Sindx_Ra.html#RADD">RADD sequences</a>
RATS: see also <a href="Sindx_Res.html#RAA">Reverse and Add! sequences</a>
RATS| Reverse Add Then Sort, <a NAME="RATS_end">sequences related to (start):</a>
Raymond strings: A005303, A005304, A005305, A005306
Rea DIVIDER
reachable configurations on circles: A005787
read n backwards: A004086
rebasing notation b[n]q: see A000695
Recaman's sequence : <a NAME="Recaman">sequences related to (start):</a>
Recaman's sequence : A005132*
Recaman's sequence, addition steps: A057165
Recaman's sequence, condensed version: A119632
Recaman's sequence, heights:  A064288 A064289* A064290 A064291 A064292 A064293 A064294
Recaman's sequence, quotients and remainders: A065051 A065052
Recaman's sequence, records for a(n)/n: A064621, A064622
Recaman's sequence, segments in: A064492 A065038 A065053
Recaman's sequence, simplified version: A008344 A046901
Recaman's sequence, steps to hit n: A057167; A064227* and A064228* (records)
Recaman's sequence, subtraction steps: A057166
Recaman's sequence, transforms based on: A064365 A022831, A053461
Recaman's sequence, two-dimensional versions: A066201 A066202
Recaman's sequence, variations on: A008336 A064387 A064388 A064389 A063733 A065422 A066199 A066200 A066203 A066204
Recaman's sequence: see also: A064284 A064301 A064369 A064568 A064569 A064970 A065053 A065054 A065055 A065056
Recaman's sequence|: <a NAME="Recaman_end">sequences related to (start):</a>
reciprocal of n, decimal expansion of: see <a href="Sindx_1.html#1overn">1/n</a>
reciprocals of primes: see <a href="Sindx_1.html#1overn">1/p</a>
record high values in a sequence {a(i)} occur at indices i such that a(i) > a(j) for all j < i
rectangles, Latin, see <a href="Sindx_La.html#Latin">Latin squares</a>
recurrence a(2^i+j)  ..., <a NAME="recurrence2ipj)">sequences related to (start):</a>
recurrence a(2^i+j)  ...| <a NAME="recurrence2ipj)_end">sequences related to (start):</a>
recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D): (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708.
recurrence, linear, constant coefficients,  END
recurrence, linear, constant coefficients, <a NAME="recLCC">sequences related to (start):</a>
recurrence, linear, order 01, ( 1): A000004, A000012, A007395, A010701, A010709, A010716, A010722, A010727, A010731, A010734, A010692, A010850, A137261, A057427, A040000, A063524, A122553, A100401, A123932, A153881
recurrence, linear, order 01, ( 2): A000079, A007283, A081808, A020707, A020714, A091629, A005009, A005010, A005015, A005029, A110286, A110287, A110288, A084215, A011782, A131577, A003945, A166687, A132479, A098011, A111286
recurrence, linear, order 01, ( 3): A000244, A008776, A005030, A005032, A005051, A005052, A120354, A116530, A025192, A176413
recurrence, linear, order 01, ( 4): A000302, A004171, A002023, A002042, A002063, A002066, A002089, A081294
recurrence, linear, order 01, ( 5): A000351, A020729, A005055
recurrence, linear, order 01, ( 6): A000400, A081341, A169604
recurrence, linear, order 01, ( 7): A000420, A109808
recurrence, linear, order 01, ( 8): A001018
recurrence, linear, order 01, ( 9): A001019
recurrence, linear, order 01, (-1): A033999
recurrence, linear, order 01, (-2): A122803, A176414, A110164
recurrence, linear, order 01, (10): A011557, A178501
recurrence, linear, order 01, (12): A001021
recurrence, linear, order 01, (16): A090411
recurrence, linear, order 02, (-1,-1): A061347, A049347, A102283
recurrence, linear, order 02, (-1,1): A075193, A061084, A039834
recurrence, linear, order 02, (-1,2): A084247
recurrence, linear, order 02, (-11,1): A122574
recurrence, linear, order 02, (-2,-1): A038608
recurrence, linear, order 02, (-2,-2): A078069
recurrence, linear, order 02, (-2,-9): A025170
recurrence, linear, order 02, (-2,1): A077985
recurrence, linear, order 02, (-2,2): A009116
recurrence, linear, order 02, (-2,3): A014983
recurrence, linear, order 02, (-3,-1): A099496, A098150, A098149
recurrence, linear, order 02, (-3,-2): A104934
recurrence, linear, order 02, (-4,-4): A122803, A085750
recurrence, linear, order 02, (-4,1): A099843
recurrence, linear, order 02, (0,-1): A056594, A057077, A112030, A117569
recurrence, linear, order 02, (0,-2): A077966
recurrence, linear, order 02, (0,1): A000035, A059841, A000034, A176040, A153284, A010684, A010685, A168428, A010686, A176260
recurrence, linear, order 02, (0,12): A176710
recurrence, linear, order 02, (0,2): A016116, A029744, A158780, A077957
recurrence, linear, order 02, (0,3): A083658, A162436, A052919, A038754
recurrence, linear, order 02, (0,4): A084221
recurrence, linear, order 02, (0,5): A133632
recurrence, linear, order 02, (0,9): A133125
recurrence, linear, order 02, (1,-1): A057079, A117373, A119910, A117378, A010892, A174737
recurrence, linear, order 02, (1,1): A000032, A000045, A020695, A020701, A020712, A000285, A104449, A022095, A090991, A078642, A001060, A013655, A022112, A022113, A022114, A022367, A022115, A022368, A022116, A022086, A006355, A022102, A022103, A002296, A022097, A022098, A022099, A022100, A022101, A164413
recurrence, linear, order 02, (1,12): A087452
recurrence, linear, order 02, (1,2): A001045, A078008, A014551, A171160, A048573
recurrence, linear, order 02, (1,20): A053428
recurrence, linear, order 02, (1,25): A122995
recurrence, linear, order 02, (1,3): A006138
recurrence, linear, order 02, (1,30): A053430
recurrence, linear, order 02, (1,4): A006131, A072265
recurrence, linear, order 02, (1,6): A087451, A015441
recurrence, linear, order 02, (1,8): A100303, A100304, A015443
recurrence, linear, order 02, (1,9): A122994
recurrence, linear, order 02, (10,-1): A001078, A001079, A072256, A004189, A054320, A077251, A087799, A077249, A122652, A122653, A077409, A077250
recurrence, linear, order 02, (10,-10): A176174
recurrence, linear, order 02, (10,-16): A081342, A016131
recurrence, linear, order 02, (10,-17): A164592, A164595
recurrence, linear, order 02, (10,-22): A162275
recurrence, linear, order 02, (10,-23): A161734
recurrence, linear, order 02, (10,-9): A062396, A002452, A173952
recurrence, linear, order 02, (10,10): A057093
recurrence, linear, order 02, (10,7): A157765
recurrence, linear, order 02, (100,-1): A154027
recurrence, linear, order 02, (102,-1): A097726
recurrence, linear, order 02, (11,-1): A078922, A004190, A097783, A057076, A075835
recurrence, linear, order 02, (11,-10): A002275, A000533, A000042, A002283, A173262, A170955, A173810, A173806, A173806, A173804, A173768, A173813,A173808, A173764, A173734, A173812, A173772, A173766, A173737, A173736, A173776, A173735, A173811, A173807, A173802, A173770, A093135, A178769
recurrence, linear, order 02, (11,-30): A005062
recurrence, linear, order 02, (11,1): A049666, A102312, A001946, A099100
recurrence, linear, order 02, (11,26): A153709
recurrence, linear, order 02, (12,-1): A023038, A077417, A004191, A077416, A087800, A065101
recurrence, linear, order 02, (12,-11): A156341
recurrence, linear, order 02, (12,-27): A025551
recurrence, linear, order 02, (12,-30): A145301
recurrence, linear, order 02, (12,-32): A063481, A016152
recurrence, linear, order 02, (12,-34): A147957
recurrence, linear, order 02, (12,8): A155073
recurrence, linear, order 02, (13,-1): A085260, A078362, A078363
recurrence, linear, order 02, (13,-10): A155049
recurrence, linear, order 02, (13,-36): A016153
recurrence, linear, order 02, (13,1): A140455
recurrence, linear, order 02, (14,-1): A011943, A011944, A122769, A001570, A122571, A007655, A094347, A067902, A094347, A028230, A011945, A067900, A122572
recurrence, linear, order 02, (14,-13): A141012
recurrence, linear, order 02, (14,-4): A097068
recurrence, linear, order 02, (14,-40): A081343
recurrence, linear, order 02, (14,-42): A145302
recurrence, linear, order 02, (14,-47): A147958
recurrence, linear, order 02, (14,-48): A081201
recurrence, linear, order 02, (15,-1): A078364, A078365, A160682
recurrence, linear, order 02, (15,1): A090301
recurrence, linear, order 02, (16,-1): A001081, A077412, A001080, A090727, A154021
recurrence, linear, order 02, (16,-56): A145303, A016177
recurrence, linear, order 02, (16,-57): A152265
recurrence, linear, order 02, (16,-59): A152109
recurrence, linear, order 02, (16,-62): A147959
recurrence, linear, order 02, (17,-1): A078366, A078367, A161599, A161595
recurrence, linear, order 02, (17,-72): A074624
recurrence, linear, order 02, (17,1): A090306
recurrence, linear, order 02, (18,-1): A023039, A007805, A049660, A049629, A087215, A075796, A075869, A065102, A103134, A060645, A134492, A173121
recurrence, linear, order 02, (18,-75): A152264
recurrence, linear, order 02, (18,-79): A147960
recurrence, linear, order 02, (18,-80): A060531
recurrence, linear, order 02, (18,-81): A158749
recurrence, linear, order 02, (189,-1): A097731
recurrence, linear, order 02, (19,-1): A078368, A078369, 
recurrence, linear, order 02, (19,-90): A016189
recurrence, linear, order 02, (194,-1): A084232
recurrence, linear, order 02, (2,-1): A086570, A092535, A005408, A001477, A005843, A000027, A008585, A016777, A016813, A016825, A016921, A008574, A016789, A008587, A008596, A004767, A017281, A008588, A008458, A008706, A170837, A135042, A140164, A099048, A099943, A005377, A060747
recurrence, linear, order 02, (2,-2): A099087, A009545
recurrence, linear, order 02, (2,-8): A090591
recurrence, linear, order 02, (2,1): A048694, A048693, A052542, A001333
recurrence, linear, order 02, (2,11): A090042
recurrence, linear, order 02, (2,2): A026150, A002605, A028859, A080040, A106433, A028860, A083337, A021006, A116556, A121907
recurrence, linear, order 02, (2,21): A123012
recurrence, linear, order 02, (2,25): A123004
recurrence, linear, order 02, (2,3): A015518, A046717, A054878, A152011
recurrence, linear, order 02, (2,4): A063727, A084057, A087206, A063782
recurrence, linear, order 02, (2,5): A002533, A176812
recurrence, linear, order 02, (2,6): A083099
recurrence, linear, order 02, (2,7): A015519
recurrence, linear, order 02, (2,8): A003665
recurrence, linear, order 02, (2,9): A002535
recurrence, linear, order 02, (20,-1): A001084, A001085, A075839, A075843, A083043, A090728, A075844
recurrence, linear, order 02, (21,-1): A092499, A090729
recurrence, linear, order 02, (21,1): A090310
recurrence, linear, order 02, (22,-1): A077422, A077421, A090730
recurrence, linear, order 02, (23,-1): A097778, A090731
recurrence, linear, order 02, (24,-1): A077424, A077423, A090732
recurrence, linear, order 02, (25,-1): A097780, A090733, A154022
recurrence, linear, order 02, (26,-1): A097308, A097309, A090247, A153111
recurrence, linear, order 02, (27,-1):A097781
recurrence, linear, order 02, (3,-1): A001519, A048575, A001906, A002878, A054486, A054492, A055267, A055273, A055849, A055850, A056123, A005248, A025169, A106729, A100545, A097512, A111282
recurrence, linear, order 02, (3,-2): A068156, A052996, A000225, A000051, A000918, A033484, A159741, A083705, A164285, A164094, A036563, A176448, A176449, A099018, A099945, A103204, A004119, A168616
recurrence, linear, order 02, (3,-3): A057681, A103312
recurrence, linear, order 02, (3,1): A052924, A006190, A003688, A108300, A006497, A097924
recurrence, linear, order 02, (3,2): A055099, A007482, A104934
recurrence, linear, order 02, (3,3): A030195, A125145, A106435, A085480, A108306, A123620, A134927
recurrence, linear, order 02, (3,4): A015521
recurrence, linear, order 02, (3,5): A072263
recurrence, linear, order 02, (3,6): A083858
recurrence, linear, order 02, (34,-1): A029547
recurrence, linear, order 02, (36,-1): A154023
recurrence, linear, order 02, (38,-1): A173127
recurrence, linear, order 02, (4,-1): A001075, A001835, A079935, A001353, A001834, A054491, A054485, A055845, A003500, A077234, A082841, A005320, A057819, A077236, A106707, A077235
recurrence, linear, order 02, (4,-2): A007070, A006012, A162269
recurrence, linear, order 02, (4,-3): A003462, A007051, A034472, A024023, A048473, A100702, A168607
recurrence, linear, order 02, (4,-4): A001787, A001792, A036289, A045623, A057711, A172160, A058922, A176662
recurrence, linear, order 02, (4,1): A001077, A033887, A001076, A015448, A048875, A048876, A048877, A048878, A048879, A014448, A014445
recurrence, linear, order 02, (4,2): A090017
recurrence, linear, order 02, (4,3): A015530
recurrence, linear, order 02, (4,4): A057087, A086347, A084128, A094013, A106568, A123871, A164593, A170931, A108051
recurrence, linear, order 02, (4,5): A015531
recurrence, linear, order 02, (49,-1): A154024
recurrence, linear, order 02, (5,-1): A002310, A002320, A004253, A004254, A030221, A055271, A099867, A054477, A003501, A099868, A164582
recurrence, linear, order 02, (5,-2): A159289
recurrence, linear, order 02, (5,-3): A095934
recurrence, linear, order 02, (5,-4): A002450, A052539, A007583, A083420, A020988, A164093, A147597, A083597
recurrence, linear, order 02, (5,-5): A030191, A020876, A081567
recurrence, linear, order 02, (5,-6): A001047, A007689
recurrence, linear, order 02, (5,1): A100237, A052918, A015449, A087130, A164581
recurrence, linear, order 02, (5,25): A122999
recurrence, linear, order 02, (5,3): A111365, A015536
recurrence, linear, order 02, (5,5): A057088, A106565, A123887
recurrence, linear, order 02, (6,-1): A038725, A001541, A038723, A001653, A001109, A002315, A054488, A038761, A054489, A054490, A001542, A003499, A075870, A077413, A077444, A106329, A038762, A075841, A106328, A077445, A100525, A005319, A077240, A101386, A075848, A077239, A081554,
recurrence, linear, order 02, (6,-3): A158869
recurrence, linear, order 02, (6,-4): A084326
recurrence, linear, order 02, (6,-5): A034474, A003463
recurrence, linear, order 02, (6,-6): A030192, A094433
recurrence, linear, order 02, (6,-7): A102285, A162270
recurrence, linear, order 02, (6,-8): A006516, A007582, A177846
recurrence, linear, order 02, (6,-9): A006234, A038754, A027471
recurrence, linear, order 02, (6,1): A005667, A005668, A085447, A078469, A179237
recurrence, linear, order 02, (6,11): A015553
recurrence, linear, order 02, (6,6): A057089, A010924
recurrence, linear, order 02, (6,8): A063376
recurrence, linear, order 02, (64,-1): A154025
recurrence, linear, order 02, (7,-1): A033889, A049685, A004187, A033890, A056914, A056854, A033891, A033888, A172968
recurrence, linear, order 02, (7,-10): A074600
recurrence, linear, order 02, (7,-12): A005061
recurrence, linear, order 02, (7,-6): A062394, A152596
recurrence, linear, order 02, (7,-8): A152268
recurrence, linear, order 02, (7,1): A015453, A054413, A086902
recurrence, linear, order 02, (7,12): A015572
recurrence, linear, order 02, (7,7): A057090
recurrence, linear, order 02, (8,-1): A001091, A105426, A070997, A001090, A057080, A077245, A086903, A077246, A077243, A077244
recurrence, linear, order 02, (8,-13): A162274
recurrence, linear, order 02, (8,-14): A161731, A083879, A081180
recurrence, linear, order 02, (8,-16): A002697
recurrence, linear, order 02, (8,-7): A034491, A034493, A023000, A168572
recurrence, linear, order 02, (8,-8): A057084, A164591, A164594
recurrence, linear, order 02, (8,1): A015454, A041024, A088317, A041025, A086594
recurrence, linear, order 02, (8,25): A155542
recurrence, linear, order 02, (8,8): A057091
recurrence, linear, order 02, (81,-1): A154026
recurrence, linear, order 02, (9,-1): A070998, A018913, A057081, A056918, A065100
recurrence, linear, order 02, (9,-10): A178869
recurrence, linear, order 02, (9,-8): A062395, A023001
recurrence, linear, order 02, (9,1): A099371
recurrence, linear, order 02, (9,9): A057092
recurrence, linear, order 02, (98,-1): A173205, A168520
recurrence, linear, order 02, (98,-2): A168522
recurrence, linear, order 03, (-1,-1,-1): A132429, A176563
recurrence, linear, order 03, (-1,-1,2): A077975, A103749
recurrence, linear, order 03, (-1,0,1): A104769, A176971
recurrence, linear, order 03, (-1,0,2): A137505, A173502
recurrence, linear, order 03, (-1,1,1): A137501
recurrence, linear, order 03, (-1,2,-1): A135019
recurrence, linear, order 03, (-2,0,1): A128587
recurrence, linear, order 03, (-2,2,-3): A102785
recurrence, linear, order 03, (-2,6,27): A103644, A103645, A103646
recurrence, linear, order 03, (-3,-3,-1): A173247
recurrence, linear, order 03, (-3,-3,-2): A158927,A158916
recurrence, linear, order 03, (-3,4,-1): A122600
recurrence, linear, order 03, (-4,-6,-4): A173315, A173435
recurrence, linear, order 03, (-5,0,6): A110211, A110211, A110213
recurrence, linear, order 03, (0,0,-1): A132954
recurrence, linear, order 03, (0,0,1): A101825, A010872, A011655, A079978, A069705, A168399, A033478, A153727, A008876, A008877, A008878, A008879, A008880, A008882, A100402, A070421, A070403, A166925, A169609
recurrence, linear, order 03, (0,0,2): A029747
recurrence, linear, order 03, (0,0,3): A000792
recurrence, linear, order 03, (0,1,1): A000931, A001608, A007307
recurrence, linear, order 03, (0,1,1): A008346
recurrence, linear, order 03, (0,1,6): A122508
recurrence, linear, order 03, (0,2,-1): A119282
recurrence, linear, order 03, (0,3,2): A172285, A053088, A095342
recurrence, linear, order 03, (1,-1,-2): A077952
recurrence, linear, order 03, (1,-1,1): A070402, A000689, A095915, A070352, A001148, A168400, A014391, A070414, A070410, A001903, A070400, A070376, A070368
recurrence, linear, order 03, (1,-2,1): A121311
recurrence, linear, order 03, (1,-3,2): A133455
recurrence, linear, order 03, (1,0,-1): A104770, A104771, A165192
recurrence, linear, order 03, (1,0,1): A000930, A078012, A068921, A135851
recurrence, linear, order 03, (1,0,10): A178205
recurrence, linear, order 03, (1,0,2): A164410, A164414
recurrence, linear, order 03, (1,1,-1): A136746, A004526, A008619, A001644, A001651, A007310, A032766, A158803, A028242, A052928, A173512, A047348, A168489, A168486, A090570, A176010, A168461, A167534, A047241, A047233, A168210, A156849, A167533, A155097, A156718, A168197
recurrence, linear, order 03, (1,1,1): A000073, A000213, A001644, A001590, A020992, A081172, A007486, A100683, A141036, A141523
recurrence, linear, order 03, (1,1,2): A122552, A078010
recurrence, linear, order 03, (1,16,-16): A176963
recurrence, linear, order 03, (1,2,-1): A006053
recurrence, linear, order 03, (1,2,-2): A063757, A027383
recurrence, linear, order 03, (1,2,1): A141015
recurrence, linear, order 03, (1,3,-2): A104005, A099163
recurrence, linear, order 03, (1,3,-3): A087503
recurrence, linear, order 03, (1,4,-4): A097163, A135520, A136326, A136336, A137208, A176965, A133628
recurrence, linear, order 03, (1,5,-5): A133629
recurrence, linear, order 03, (10,-23,14): A155598, A155590
recurrence, linear, order 03, (10,10,-3): A092936
recurrence, linear, order 03, (100,1,-100): A153435
recurrence, linear, order 03, (102,-201,100): A060183
recurrence, linear, order 03, (11,-11,1): A095685, A098297, A132596
recurrence, linear, order 03, (11,-26,16): A155599
recurrence, linear, order 03, (11,-36,36): A001240
recurrence, linear, order 03, (111,-1110,1000): A171226
recurrence, linear, order 03, (12,-15,2): A122009
recurrence, linear, order 03, (12,-19,-10): A178626
recurrence, linear, order 03, (12,-21,10): A173834, A173835
recurrence, linear, order 03, (12,-29,18): A155600
recurrence, linear, order 03, (12,-39,28): A155628
recurrence, linear, order 03, (12,-41,30): A155639, A155633
recurrence, linear, order 03, (13,-32,20): A155601
recurrence, linear, order 03, (13,-39,27): A034513, A051406, A169725, A169724, A169723, A006100
recurrence, linear, order 03, (13,-44,32): A155629
recurrence, linear, order 03, (13,-47,35): A155640, A155634
recurrence, linear, order 03, (14,-25,12): A173393
recurrence, linear, order 03, (14,-49,36): A155630
recurrence, linear, order 03, (14,-53,40): A155641,
recurrence, linear, order 03, (14,-55,42): A155650
recurrence, linear, order 03, (14,-63,90): A001579
recurrence, linear, order 03, (15,-15,1): A007654, A098301, A011922, A011916, A011918
recurrence, linear, order 03, (15,-54,40): A155631
recurrence, linear, order 03, (15,-59,45): A155642
recurrence, linear, order 03, (15,-62,48): A155646
recurrence, linear, order 03, (16,-59,44): A155632
recurrence, linear, order 03, (16,-69,54): A155647
recurrence, linear, order 03, (17,-64,48): A016227
recurrence, linear, order 03, (17,-71,55): A155638
recurrence, linear, order 03, (17,-76,60): A155648
recurrence, linear, order 03, (18,-104,192): A178294
recurrence, linear, order 03, (18,-108,216): A128785
recurrence, linear, order 03, (18,-33,16): A014899
recurrence, linear, order 03, (18,-83,66): A155649, A155654
recurrence, linear, order 03, (195,-195,1): A006060, A036428, A084231
recurrence, linear, order 03, (2,-1,1): A164394, A164409, A164494
recurrence, linear, order 03, (2,-1,2): A007910, A100720
recurrence, linear, order 03, (2,-2,1): A070353, A070388, A070369
recurrence, linear, order 03, (2,0,-1): A000071, A111733, A166863, A014739, A154691, A001595, A164480, A167616, A157729, A157728, A157727, A157726, A157725, A020732
recurrence, linear, order 03, (2,0,1): A052980, A008998
recurrence, linear, order 03, (2,1,-1): A006356, A006054
recurrence, linear, order 03, (2,1,-2): A000975, A005578, A166920, A084639, A101622, A173114
recurrence, linear, order 03, (2,1,1): A109545
recurrence, linear, order 03, (2,12,8): A086346
recurrence, linear, order 03, (2,2,-1): A001254, A090692, A102714, A129905, A007598, A121646, A121801, A047946, A061646, A081714
recurrence, linear, order 03, (2,2,-3): A099232
recurrence, linear, order 03, (2,2,-4): A122746, A014236, A005418
recurrence, linear, order 03, (2,2,1): A001654
recurrence, linear, order 03, (2,3,-2): A046672, A107334
recurrence, linear, order 03, (2,3,-6): A167762, A167784, A167936
recurrence, linear, order 03, (2,4,-3): A107361
recurrence, linear, order 03, (2,5,-6): A094554, A094555
recurrence, linear, order 03, (2,6,-4): A124023
recurrence, linear, order 03, (2,7,-8): A100302
recurrence, linear, order 03, (21,-143,315): A178295
recurrence, linear, order 03, (22,-41,20): A014904
recurrence, linear, order 03, (24,-188,480): A178296
recurrence, linear, order 03, (24,-191,504): A074580
recurrence, linear, order 03, (24,-24,1): A160695
recurrence, linear, order 03, (27,-224,528): A020568
recurrence, linear, order 03, (27,-239,693): A178297
recurrence, linear, order 03, (3,-1,-1): A048739, A174191, A052937
recurrence, linear, order 03, (3,-1,-2): A099166
recurrence, linear, order 03, (3,-1,2): A104004
recurrence, linear, order 03, (3,-2,2): A115219, A111281
recurrence, linear, order 03, (3,-3,1): A056109, A000217, A000290, A000326, A000384, A001844, A002061, A000566, A000567, A001107, A001106, A005448, A005891, A146301, A146302, A141759, A002378, A002522, A000124, A005563, A003215, A000096, A001107, A051682, A078370, A016754, A005449, A016742, A014105, A028347, A033996, A034856, A007742, A033991, A033428, A051624, A028560, A033951, A045944,A035008, A049450, A014206, A056220, A002939, A028387, A051890, A058331, A104675, A016898, A017006, A017378, A157474, A172043, A027688, A059993, A084849, A152742, A135706, A153808, A028884, A022282, A062725, A062728, A060798, A001536, A177059, A157768, A177072, A154355, A154377, A154510, A156639, A156640, A156721, A156735, A156841, A156842, A154254, A010008, A100451, A028557, A028563, A028566, A098603, A094914, A123968, A000466, A001105, A001107, A001539, A002943, A004538, A005570
recurrence, linear, order 03, (3,-3,2): A024495, A131708, A024493, A086953, A131370
recurrence, linear, order 03, (3,-3,9): A101990
recurrence, linear, order 03, (3,0,-1): A123891, A123941
recurrence, linear, order 03, (3,0,-4): A172481, A140960, A139790
recurrence, linear, order 03, (3,1,-1): A033505
recurrence, linear, order 03, (3,1,-3): A153774, A153773, A122983
recurrence, linear, order 03, (3,2,-4): A052899
recurrence, linear, order 03, (3,2,1): A070207
recurrence, linear, order 03, (3,3,-2): A123950
recurrence, linear, order 03, (3,3,-9): A122007
recurrence, linear, order 03, (3,3,1): A120893
recurrence, linear, order 03, (3,4,-12): A167910
recurrence, linear, order 03, (3,5,1): A102129
recurrence, linear, order 03, (3,6,-8): A084175, A108924, A139818
recurrence, linear, order 03, (35,-35,1): A001110
recurrence, linear, order 03, (4,-2,-3): A099167, A098703
recurrence, linear, order 03, (4,-3,2): A111285
recurrence, linear, order 03, (4,-4,1): A027941, A065034, A162483, A153466, A055588, A056124, A107328, A092387
recurrence, linear, order 03, (4,-4,25): A107248
recurrence, linear, order 03, (4,-5,2): A000295, A000325, A133124, A176691, A132074, A169831, A100314, A100315, A100316, A099041
recurrence, linear, order 03, (4,-6,4): A000749, A038503
recurrence, linear, order 03, (4,1,-4): A043291
recurrence, linear, order 03, (4,11,-2): A122883, A122884, A122885
recurrence, linear, order 03, (49,-624,576): A014942
recurrence, linear, order 03, (5,-3,-1): A049651
recurrence, linear, order 03, (5,-5,1): A092184, A101265, A121401, A102206
recurrence, linear, order 03, (5,-7,2): A061667
recurrence, linear, order 03, (5,-7,3): A108765, A164039, A173391, A176805, A111277
recurrence, linear, order 03, (5,-8,4): A000337, A002064, A163383
recurrence, linear, order 03, (5,1,-5): A123010
recurrence, linear, order 03, (5,2,-8): A159616
recurrence, linear, order 03, (5,5,-1): A046729, A105058, A084159, A046727, A090390
recurrence, linear, order 03, (6,-11,6): A118979, A091344, A001550, A000392, A134063, A066280, A169651
recurrence, linear, order 03, (6,-12,8): A001788, A007758, A001793, A158920, A058396
recurrence, linear, order 03, (6,-12,9): A133474
recurrence, linear, order 03, (6,-9,2): A120665
recurrence, linear, order 03, (6,-9,4): A158879, A164044, A141291
recurrence, linear, order 03, (6,0,-8): A111989
recurrence, linear, order 03, (7,-11,5): A094195, A164045, A176916
recurrence, linear, order 03, (7,-14,8): A001576, A006095, A170940, A170939, A134169, A169727, A169726, A169722, A169721, A177845
recurrence, linear, order 03, (7,-7,1): A001652, A046090, A001108
recurrence, linear, order 03, (8,-13,6): A094259
recurrence, linear, order 03, (8,-17,10): A074501, A155596, A155588
recurrence, linear, order 03, (8,-19,12): A074506
recurrence, linear, order 03, (8,-8,1): A064170, A081016, A081007
recurrence, linear, order 03, (8,1,-8): A152776
recurrence, linear, order 03, (8,8,-8): A159617
recurrence, linear, order 03, (9,-15,7): A176972
recurrence, linear, order 03, (9,-20,12): A155597
recurrence, linear, order 03, (9,-26,24): A016269
recurrence, linear, order 03, (99,-99,1): A173115
recurrence, linear, order 04, (-1,-1,-1,-1): A132342, A138019, A105368
recurrence, linear, order 04, (-1,-2,-1,-1): A098554, A111586
recurrence, linear, order 04, (-1,0,1,1): A178143, A178142
recurrence, linear, order 04, (-2,-3,-2,-1): A115054
recurrence, linear, order 04, (-2,0,2,1): A083392
recurrence, linear, order 04, (-2,9,10,-5): A124024
recurrence, linear, order 04, (-4,-6,-4,-1): A173248
recurrence, linear, order 04, (-4,0,36,81): A113249
recurrence, linear, order 04, (-4,0,4,1): A097948, A097947, A097949, A108946
recurrence, linear, order 04, (-4,5,0,-3): A103135
recurrence, linear, order 04, (0,-1,0,-1): A101675, A100434, A163811, A163817
recurrence, linear, order 04, (0,-5,0,-1): A101463
recurrence, linear, order 04, (0,0,0,-1): A118831
recurrence, linear, order 04, (0,0,0,1): A010873, A010121, A133145, A070354, A070432, A070423, A070416, A070406, A070386, A070370, A166486, A131712, A014695, A134267
recurrence, linear, order 04, (0,1,0,1): A082587
recurrence, linear, order 04, (0,1,1,1): A107458
recurrence, linear, order 04, (0,10,0,-16): A083332
recurrence, linear, order 04, (0,10,0,-9): A167205
recurrence, linear, order 04, (0,14,0,-1): A144536
recurrence, linear, order 04, (0,2,0,-1): A006370, A026741, A176592, A176593, A123167, A179820
recurrence, linear, order 04, (0,2,0,2): A160572, A160444
recurrence, linear, order 04, (0,20,0,-99): A161999
recurrence, linear, order 04, (0,3,0,-1): A099255, A099256, A122012
recurrence, linear, order 04, (0,3,0,-2): A106624
recurrence, linear, order 04, (0,34,0,-1): A144534
recurrence, linear, order 04, (0,4,0,-2): A007068, A001882
recurrence, linear, order 04, (0,4,0,1): A002530
recurrence, linear, order 04, (0,5,0,-1): A136211
recurrence, linear, order 04, (0,5,0,-5): A178381
recurrence, linear, order 04, (0,5,0,32): A152269
recurrence, linear, order 04, (0,6,0,-1): A089499, A041010
recurrence, linear, order 04, (0,9,0,-12): A176968
recurrence, linear, order 04, (1,-1,1,-1): A099443, A100047
recurrence, linear, order 04, (1,0,-1,1): A154529, A146501, A153130, A029898, A033940, A168430, A070365, A070425, A070399, A070374, A070372, A070366, A070357
recurrence, linear, order 04, (1,0,-3,1): A110034
recurrence, linear, order 04, (1,0,0,1): A003269, A122789
recurrence, linear, order 04, (1,0,1,-1): A097950, A105077, A002264, A004523, A130481, A008620, A042965, A047354, A042968
recurrence, linear, order 04, (1,0,1,1): A126116, A111573
recurrence, linear, order 04, (1,0,2,1): A164389
recurrence, linear, order 04, (1,1,0,-1): A164482
recurrence, linear, order 04, (1,1,0,1): A005251, A164407
recurrence, linear, order 04, (1,1,1,-1): A164408, A164415
recurrence, linear, order 04, (1,1,1,-2): A164461
recurrence, linear, order 04, (1,1,1,1): A000078, A073817
recurrence, linear, order 04, (1,15,19,-20): A123589
recurrence, linear, order 04, (1,2,-1,-1): A014217, A052952, A074331
recurrence, linear, order 04, (1,2,1,1): A141016
recurrence, linear, order 04, (1,2,4,8): A102000
recurrence, linear, order 04, (1,3,-2,-2): A097896
recurrence, linear, order 04, (1,4,-2,-4): A085903
recurrence, linear, order 04, (10,8,-16,-16): A121960
recurrence, linear, order 04, (11,-27,25,-8): A003222
recurrence, linear, order 04, (1111,-112110,1111000,-1000000): A177866
recurrence, linear, order 04, (12,-34,14,16): A069294
recurrence, linear, order 04, (13,-36,13,-1): A161498
recurrence, linear, order 04, (14,-34,14,-1): A161158
recurrence, linear, order 04, (15,-32,15,-1): A161495
recurrence, linear, order 04, (19,-41,19,-1): A003729, A143699
recurrence, linear, order 04, (2,-1,-2,2): A106664
recurrence, linear, order 04, (2,-1,2,-2): A164395, A164399
recurrence, linear, order 04, (2,-2,2,-1): A108752, A047229
recurrence, linear, order 04, (2,0,-1,1): A059633
recurrence, linear, order 04, (2,0,-1,2): A113405
recurrence, linear, order 04, (2,0,-2,1): A002623, A102214, A092634, A002620,A007590, A121470, A097063, A061925, A173511, A035608, A033638, A174929, A004652, A179272
recurrence, linear, order 04, (2,0,-2,2): A164402, A164404
recurrence, linear, order 04, (2,0,0,-1): A027084, A164398
recurrence, linear, order 04, (2,0,1,-2): A063823, A155803
recurrence, linear, order 04, (2,1,-2,-1): A102702, A001629, A133673, A136376, A166106, A067331, A134410, A146005
recurrence, linear, order 04, (2,1,0,-1): A052967
recurrence, linear, order 04, (2,2,2,-1): A071101, A138573
recurrence, linear, order 04, (2,3,-1,-1): A122595
recurrence, linear, order 04, (2,3,-4,-4): A095977
recurrence, linear, order 04, (2,4,-1,-1): A123947
recurrence, linear, order 04, (2,6,-6,-9): A099583
recurrence, linear, order 04, (24,-158,360,-225): A141014
recurrence, linear, order 04, (24,-163,336,-196): A141013
recurrence, linear, order 04, (28,-294,1372,-2401): A140107
recurrence, linear, order 04, (3,-1,-3,2): A171507
recurrence, linear, order 04, (3,-2,-1,1): A104161, A001924, A013915
recurrence, linear, order 04, (3,-2,1,-1): A117080
recurrence, linear, order 04, (3,-4,2,-1): A171408
recurrence, linear, order 04, (3,0,-4,2): A106666
recurrence, linear, order 04, (3,0,2,-2): A052958
recurrence, linear, order 04, (3,0,3,-1): A110035
recurrence, linear, order 04, (3,14,-15,-7): A177140
recurrence, linear, order 04, (3,6,-3,-1): A056570, A083564, A066259, A066258
recurrence, linear, order 04, (34,-416,2174,-4096): A178298
recurrence, linear, order 04, (36,-476,2736,-5760): A178299
recurrence, linear, order 04, (4,-2,-2,1): A061703
recurrence, linear, order 04, (4,-2,-4,-1): A006645
recurrence, linear, order 04, (4,-3,-2,1): A108140
recurrence, linear, order 04, (4,-3,-4,4): A174836
recurrence, linear, order 04, (4,-4,-1,2): A060161, A101351, A101353
recurrence, linear, order 04, (4,-4,0,1): A121991, A051959, A048776, A048777, A059020
recurrence, linear, order 04, (4,-6,4,-1): A006000, A136264, A113922, A000292, A001505, A133766, A133767, A000338, A000578, A000330, A005900, A006003, A002411, A063496, A000447, A004006, A006527, A045991, A001845, A002412, A007531, A007290, A005917, A007588, A000125, A079908, A110427, A051941, A106058, A037236, A125200, A166464, A172482, A002492, A166911, A126420, A168574, A168547, A037237, A173965, A104099, A112524, A152100, A152110, A162607, A160378, A177787, A140226, A100166, A119536, A177342, A092185, A081490
recurrence, linear, order 04, (4,-6,6,-3): A137247
recurrence, linear, order 04, (5,-2,5,-1): A144109
recurrence, linear, order 04, (5,-3,0,-1): A111283
recurrence, linear, order 04, (5,-4,-8,8): A060160
recurrence, linear, order 04, (5,-5,-5,6): A140420, A092438
recurrence, linear, order 04, (5,-8,5,-1): A027937, A033550, A152891
recurrence, linear, order 04, (5,-9,7,-2): A020873, A169832
recurrence, linear, order 04, (5,-9,8,-3): A137221
recurrence, linear, order 04, (5,0,-10,4): A005826, A005827
recurrence, linear, order 04, (5,9,1,-2): A020866
recurrence, linear, order 04, (6,-11,6,-1): A117202, A121254, A121257, A121255, A094864, A038731
recurrence, linear, order 04, (6,-13,12,-1): A069229
recurrence, linear, order 04, (6,-13,6,-1): A105660
recurrence, linear, order 04, (6,7,-5,-6): A019484
recurrence, linear, order 04, (8,-21,20,-5): A094865
recurrence, linear, order 04, (8,-22,23,-6): A089883
recurrence, linear, order 04, (8,-22,24,-9): A121365
recurrence, linear, order 04, (8,-24,32,-16): A100313, A093374
recurrence, linear, order 05, (0,0,-1,0,1): A136598
recurrence, linear, order 05, (0,0,0,0,1): A158607, A010891, A070341, A070355, A168429, A070430, A070397, A070390, A070375, A070367, A011558
recurrence, linear, order 05, (0,0,2,1,-1): A122518
recurrence, linear, order 05, (0,1,-1,-1,1): A115413
recurrence, linear, order 05, (0,1,0,0,1): A001687
recurrence, linear, order 05, (0,1,1,0,-1): A008615, A103221
recurrence, linear, order 05, (0,1,1,0,1): A176513
recurrence, linear, order 05, (0,1,2,2,1): A164416
recurrence, linear, order 05, (0,2,1,0,-2): A173593
recurrence, linear, order 05, (0,3,1,0,-1): A106523
recurrence, linear, order 05, (1,-1,1,-1,1): A070347, A070378
recurrence, linear, order 05, (1,-3,3,-4,4): A107443
recurrence, linear, order 05, (1,0,0,-1,1): A070361, A062116
recurrence, linear, order 05, (1,0,0,0,1): A003520
recurrence, linear, order 05, (1,0,0,1,-1): A008624, A092533, A002265, A130482, A047411, A168484, A116080
recurrence, linear, order 05, (1,0,1,0,-1): A123552
recurrence, linear, order 05, (1,0,1,1,1): A001639, A164422, A164425
recurrence, linear, order 05, (1,1,0,0,1): A164411, A164421
recurrence, linear, order 05, (1,1,0,1,-1): A115412, A164427, A164387, A164388, A164427
recurrence, linear, order 05, (1,1,1,-1,-1): A164412, A104221, A004695
recurrence, linear, order 05, (1,1,1,0,-1): A115412
recurrence, linear, order 05, (1,1,1,1,1): A124312, A074048, A001591
recurrence, linear, order 05, (1,10,-10,-1,1): A179934
recurrence, linear, order 05, (1,2,-2,-1,1): A001318, A001082, A014632, A050187, A164097, A062717, A062317, A074378, A132355, A014255, A113338, A179088, A179337, A179338, A179370, A179339
recurrence, linear, order 05, (1,2,0,-1,-1): A154949
recurrence, linear, order 05, (1,26,-26,-1,1): A105036
recurrence, linear, order 05, (1,34,-34,-1,1): A006454
recurrence, linear, order 05, (1,6,-6,-1,1): A124124
recurrence, linear, order 05, (2,-1,-2,2,1): A153122
recurrence, linear, order 05, (2,-1,1,-2,1): A000969, A084683, A001840, A163979, A143975, A071619, A147623, A089108
recurrence, linear, order 05, (2,-1,1,0,-1): A164462
recurrence, linear, order 05, (2,-1,2,-1,1): A152718
recurrence, linear, order 05, (2,0,-1,0,1): A164403
recurrence, linear, order 05, (2,0,-1,1,-1): A164392
recurrence, linear, order 05, (2,0,-2,2,-1): A164490
recurrence, linear, order 05, (2,0,0,-2,1): A164393, A164400
recurrence, linear, order 05, (2,0,0,-3,2): A164484
recurrence, linear, order 05, (2,0,0,1,-2): A115851
recurrence, linear, order 05, (2,0,2,0,-1): A002524
recurrence, linear, order 05, (2,1,1,1,1): A141448
recurrence, linear, order 05, (2,2,-4,-1,2): A106157
recurrence, linear, order 05, (2,3,-6,-1,2): A173126
recurrence, linear, order 05, (20,-155,580,-1044,720): A137788
recurrence, linear, order 05, (209,-2926,2926,-209,1): A011920
recurrence, linear, order 05, (3,-1,-2,0,1): A124353
recurrence, linear, order 05, (3,-1,-3,1,1): A140992, A178523, A006478
recurrence, linear, order 05, (3,-2,-2,3,-1): A005744, A026035, A175109, A131941, A152133, A152135, A057566
recurrence, linear, order 05, (3,-2,0,-1,1): A121986
recurrence, linear, order 05, (3,-3,6,-2,2): A123892
recurrence, linear, order 05, (3,-4,4,-3,1): A011848
recurrence, linear, order 05, (3,0,-3,0,1): A123888
recurrence, linear, order 05, (3,1,-1,1,-3): A014010
recurrence, linear, order 05, (3,3,-4,-1,1): A038342
recurrence, linear, order 05, (3,9,-3,-3,1): A003758
recurrence, linear, order 05, (4,-2,4,0,-1): A111280
recurrence, linear, order 05, (4,-5,1,2,-1): A160536, A163250
recurrence, linear, order 05, (4,-6,4,-1,2): A134987
recurrence, linear, order 05, (5,-10,10,-5,1): A081441, A001296, A133818, A000332, A002417, A000537, A027441, A000583, A002415, A010874, A002523, A060884, A000127, A050534, A083196, A086602, A086601, A175110, A016900, A110450, A173121, A037270, A071253, A173116, A168538, A159833, A172075, A178073, A092181, A092182, A092183, A177206, A153978, A055503
recurrence, linear, order 05, (5,-10,10,-5,2): A171373
recurrence, linear, order 05, (5,-3,-11,16,-6): A107307
recurrence, linear, order 05, (5,30,-69,-31,22): A177142
recurrence, linear, order 05, (6,-14,16,-9,2): A169833
recurrence, linear, order 05, (7,-19,25,-16,4): A048503
recurrence, linear, order 05, (9,-28,35,-15,1): A005025, A122588
recurrence, linear, order 06, (-1,-1,-1,-1,-1,-1): A175629
recurrence, linear, order 06, (-1,1,3,1,-1,-1): A001945
recurrence, linear, order 06, (-4,-2,8,7,-4,-4): A106691
recurrence, linear, order 06, (-4,-4,-2,4,0,-1): A007574
recurrence, linear, order 06, (-4,-5,0,5,-4,1): A175112
recurrence, linear, order 06, (0,0,-1,3,-3,1): A113920
recurrence, linear, order 06, (0,0,0,0,0,1): A010875, A070435, A070516, A070431, A070511, A151899, A070419, A176514, A070383
recurrence, linear, order 06, (0,0,0,0,0,10): A178508
recurrence, linear, order 06, (0,0,10,0,0,-1): A106331
recurrence, linear, order 06, (0,0,2,0,0,-1): A089598
recurrence, linear, order 06, (0,0,4,0,0,1): A167808
recurrence, linear, order 06, (0,0,6,0,0,1): A179238
recurrence, linear, order 06, (0,1,-4,1,2,-1): A005993
recurrence, linear, order 06, (0,1,0,0,1,1): A079955
recurrence, linear, order 06, (0,1,0,1,0,-1): A109534, A178804
recurrence, linear, order 06, (0,2,0,2,0,-1): A114215
recurrence, linear, order 06, (0,201,0,-10100,0,9900): A162849
recurrence, linear, order 06, (0,3,0,-3,0,1): A000463, A079097, A123596, A129370, A147685, A065599
recurrence, linear, order 06, (1,-1,2,-1,1,-1): A091972
recurrence, linear, order 06, (1,0,0,0,-1,1): A036117, A167421, A048271, A070426, A070408, A070404, A070392
recurrence, linear, order 06, (1,0,0,0,1,-1): A002266, A130483, A130497, A047497
recurrence, linear, order 06, (1,0,1,0,1,1): A128429
recurrence, linear, order 06, (1,1,-1,1,1,1): A164419
recurrence, linear, order 06, (1,1,0,-1,-1,1): A036410, A001399
recurrence, linear, order 06, (1,1,0,0,0,-1): A164420
recurrence, linear, order 06, (1,1,0,0,1,1): A164491
recurrence, linear, order 06, (1,1,0,1,0,1): A164390
recurrence, linear, order 06, (1,1,1,-1,1,-1): A121230
recurrence, linear, order 06, (1,1,1,0,-1,-1): A164391
recurrence, linear, order 06, (1,1,1,1,-1,1): A080014
recurrence, linear, order 06, (1,1,1,1,1,1): A074584, A001592
recurrence, linear, order 06, (1,2,4,1,0,-1): A129441
recurrence, linear, order 06, (1,3,-2,-3,1,1): A054451
recurrence, linear, order 06, (10,-35,52,-35,10,-1): A006235
recurrence, linear, order 06, (12,-60,160,-240,192,-64): A169793
recurrence, linear, order 06, (2,-1,0,1,-2,1): A173562
recurrence, linear, order 06, (2,-1,0,1,0,-1): A164424
recurrence, linear, order 06, (2,-1,1,0,0,1): A164401
recurrence, linear, order 06, (2,-1,2,-2,0,-1): A164406
recurrence, linear, order 06, (2,-1,2,-3,0,1): A164483
recurrence, linear, order 06, (2,0,-1,-1,2,-1): A164481
recurrence, linear, order 06, (2,0,-1,0,0,1): A164405
recurrence, linear, order 06, (2,0,-1,0,1,-1): A164396
recurrence, linear, order 06, (2,0,0,-2,0,1): A164397
recurrence, linear, order 06, (2,1,-4,1,2,-1): A147691, A006918, A111384, A168388
recurrence, linear, order 06, (2,3,6,-1,0,-1): A141583
recurrence, linear, order 06, (2,7,-12,-11,16,-4): A142710
recurrence, linear, order 06, (3,-1,-2,-1,1,1): A095681
recurrence, linear, order 06, (3,0,-5,0,3,6): A074082
recurrence, linear, order 06, (3,0,-6,3,3,-2): A140991
recurrence, linear, order 06, (3,0,0,-1,2,2): A115220
recurrence, linear, order 06, (3,1,-7,1,3,-1): A122504
recurrence, linear, order 06, (4,-3,-3,0,3,2): A167826
recurrence, linear, order 06, (4,0,-10,0,4,-1): A169630
recurrence, linear, order 06, (40,-248,430,-248,40,-1): A161159
recurrence, linear, order 06, (6,-11,4,5,-2,-1): A111110
recurrence, linear, order 06, (6,-15,20,-15,6,-1): A069038, A089830, A000389, A000538, A024166, A006261, A175114, A179441
recurrence, linear, order 06, (6,-6,-16,12,24,8): A074359
recurrence, linear, order 06, (7,-15,6,11,-6,-1): A122611
recurrence, linear, order 06, (9,-30,46,-34,13,-2): A089932
recurrence, linear, order 07, (0,-1,-2,1,0,-1,-2): A107853
recurrence, linear, order 07, (0,0,0,0,0,0,1): A010876, A070413, A053879
recurrence, linear, order 07, (0,0,1,1,0,0,-1): A008647
recurrence, linear, order 07, (0,1,0,0,1,0,-1): A008616
recurrence, linear, order 07, (0,1,2,-1,0,1,2): A107854
recurrence, linear, order 07, (0,12,8,-36,-32,32,32): A121961
recurrence, linear, order 07, (1,-1,1,1,-1,1,-1): A173234
recurrence, linear, order 07, (1,-3,-3,3,3,-1,-1): A122576
recurrence, linear, order 07, (1,0,0,0,0,-1,1): A036118, A167425, A070411, A070405, A070393
recurrence, linear, order 07, (1,0,0,0,0,0,1): A005709
recurrence, linear, order 07, (1,0,0,0,0,1,-1): A097992, A162699, A174871
recurrence, linear, order 07, (1,0,1,1,1,1,1): A164418
recurrence, linear, order 07, (1,0,1442,-1442,0,-1,1): A046195
recurrence, linear, order 07, (1,0,2,-2,0,-1,1): A092076
recurrence, linear, order 07, (1,0,2,0,-1,-1,-1): A164426
recurrence, linear, order 07, (1,1,-1,1,-1,-1,1): A008733, A060805
recurrence, linear, order 07, (1,1,0,0,0,1,1): A164423
recurrence, linear, order 07, (1,1,0,1,1,-1,-1): A164417
recurrence, linear, order 07, (1,1,1,1,1,1,1): A104621, A122189, A066178
recurrence, linear, order 07, (1,3,-3,-3,3,1,-1): A136047, A129371
recurrence, linear, order 07, (1,6,-6,-8,8,3,-3): A134035
recurrence, linear, order 07, (14,-84,280,-560,672,-448,128): A169794
recurrence, linear, order 07, (2,-1,0,1,0,0,1): A164492
recurrence, linear, order 07, (2,-1,1,-1,1,0,1): A164493
recurrence, linear, order 07, (2,-2,3,-3,2,-2,1): A014679
recurrence, linear, order 07, (2,0,-1,-1,1,1,-1): A164460
recurrence, linear, order 07, (3,-2,-1,3,-4,0,2): A175378
recurrence, linear, order 07, (3,-3,1,1,-3,3,-1): A011894, A152134, A152132
recurrence, linear, order 07, (4,-6,18,-11,22,-6,6): A123893
recurrence, linear, order 07, (4,-6,5,-2,-1,1,-1): A083839
recurrence, linear, order 07, (4,0,6,0,4,0,-1): A123889
recurrence, linear, order 07, (5,-9,5,5,-9,5,-1): A175111
recurrence, linear, order 07, (7,-21,35,-35,21,-7,1): A006858, A051946, A069039, A000579, A060888, A040977, A136038, A175113, A169801, A001249, A109764
recurrence, linear, order 07, (9,-21,3,24,-8,-4,4): A069325
recurrence, linear, order 08, (-1,2,3,0,-3,-2,1,1): A114208
recurrence, linear, order 08, (-2,-2,-1,0,1,2,2,1): A178147
recurrence, linear, order 08, (-2,0,0,2,0,0,1): A104237
recurrence, linear, order 08, (0,0,0,0,0,0,0,1): A010877, A070380, A070358, A070439, A000216
recurrence, linear, order 08, (0,0,0,0,0,0,1,1): A103375
recurrence, linear, order 08, (0,0,0,1,0,0,0,1): A097575
recurrence, linear, order 08, (0,0,0,10,0,0,0,16): A132152
recurrence, linear, order 08, (0,0,0,6,0,0,0,-1): A116558
recurrence, linear, order 08, (0,0,0,7,0,0,0,-1): A167816
recurrence, linear, order 08, (0,12,0,-38,0,12,0,-1): A137195
recurrence, linear, order 08, (0,4,0,-6,0,4,0,1): A115046
recurrence, linear, order 08, (0,6,0,-12,0,9,0,-2): A078993
recurrence, linear, order 08, (1,0,0,0,0,0,-1,1): A070398, A070379
recurrence, linear, order 08, (1,0,0,0,0,0,1,-1): A130485
recurrence, linear, order 08, (1,1,1,1,1,1,1,1): A079262
recurrence, linear, order 08, (1,2,-1,-2,-1,2,1,-1): A083709
recurrence, linear, order 08, (2,-1,0,0,0,1,-2,1): A008724, A112421
recurrence, linear, order 08, (2,-1,2,-4,2,-1,2,-1): A092353
recurrence, linear, order 08, (2,0,-2,2,-2,0,2,-1): A005232
recurrence, linear, order 08, (2,2,-4,-1,0,0,2,1): A089098
recurrence, linear, order 08, (2,2,-6,0,6,-2,-2,1): A030179
recurrence, linear, order 08, (3,-3,1,0,1,-3,3,-1): A011892, A011897, A011912, A026039
recurrence, linear, order 08, (4,-4,-4,10,-4,-4,4,-1): A028346
recurrence, linear, order 08, (4,5,-23,-19,37,42,-8): A134326
recurrence, linear, order 08, (4,6,-32,-19,96,54,-108,-81): A074357
recurrence, linear, order 08, (6,-14,14,0,-14,14,-6,1): A053493
recurrence, linear, order 08, (8,-28,56,-70,56,-28,8,-1): A000580, A086020, A168526, A085438, A107601
recurrence, linear, order 08, (9,-26,35,-22,-3,16,-9,1): A059021
recurrence, linear, order 09, (0,0,0,0,0,0,0,0,1): A070433, A070420, A070412, A070395, A070385, A070373, A122219
recurrence, linear, order 09, (0,0,3,0,0,-3,0,0,2): A158745
recurrence, linear, order 09, (0,0,3,0,0,-3,0,0,3): A140495
recurrence, linear, order 09, (0,0,9,0,0,-26,0,0,24): A118263
recurrence, linear, order 09, (0,2,0,-1,1,0,-2,0,1): A038167, A008720
recurrence, linear, order 09, (1,-1,1,-1,1,-1,1,-1,1): A070417
recurrence, linear, order 09, (1,0,0,-1,1,0,0,-1,1): A079344
recurrence, linear, order 09, (1,0,0,0,0,0,0,-1,1): A036119, A070407, A070394, A070382, A070371, A070359
recurrence, linear, order 09, (1,0,1,-1,1,-1,0,-1,1): A091971, A097920, A097923, A070366
recurrence, linear, order 09, (1,1,1,1,1,1,1,1,1): A104144
recurrence, linear, order 09, (1,2,-2,0,0,-2,2,1,-1): A106607
recurrence, linear, order 09, (1,4,-4,-6,6,4,-4,-1,1): A160451
recurrence, linear, order 09, (2,-1,0,0,0,0,1,-2,1): A011867, A008725, A036405
recurrence, linear, order 09, (3,-4,4,-4,4,-4,4,-3,1): A011861
recurrence, linear, order 09, (3,0,-8,6,6,-8,3,-1): A059859
recurrence, linear, order 09, (319,-12441,128319,-408001,408801,-128319,12441,-319,1): A003733
recurrence, linear, order 09, (4,-6,4,-1,1,-4,6,-4,1): A011915, A011925, A011930, A011940, A032768
recurrence, linear, order 09, (5,-10,10,-6,6,-10,10,-5,1): A011926
recurrence, linear, order 09, (5,-10,40,-35,105,-50,100,-24,24): A123894
recurrence, linear, order 09, (5,0,-10,0,10,0,-5,0,1): A123890
recurrence, linear, order 09, (9,-36,84,-126,126,-84,36,-9,1): A168527, A109125
recurrence, linear, order 10, (-1,-1,-1,-1,-1,-1,-1,-1,-1,-1): A173245
recurrence, linear, order 10, (-1,0,0,0,0,0,0,0,-1,-1): A108057
recurrence, linear, order 10, (-1,0,1,1,1,1,1,0,-1,-1): A173243, A125950, A143335, A029826
recurrence, linear, order 10, (-1,1,0,1,1,1,1,0,-1,-1): A142155
recurrence, linear, order 10, (0,0,0,0,0,0,0,0,0,1): A010879, A130875, A070381, A070362, A175408, A008959, A070442
recurrence, linear, order 10, (0,0,0,0,0,0,0,0,1,1): A103377
recurrence, linear, order 10, (0,0,0,0,364,0,0,0,0,1): A041091
recurrence, linear, order 10, (0,0,0,1,1,1,0,0,0,-1): A147652
recurrence, linear, order 10, (0,1,0,-1,0,1,0,-1,0,1): A070422
recurrence, linear, order 10, (0,1,0,0,-2,0,0,1,1,-1): A001400
recurrence, linear, order 10, (0,1,0,1,1,0,1,1,0,1): A122762
recurrence, linear, order 10, (0,1,1,0,0,0,-1,-1,0,1): A140402, A140403
recurrence, linear, order 10, (1,0,0,0,0,0,0,0,-1,1): A036120, A070337, A070342, A070377, A070360
recurrence, linear, order 10, (1,1,1,1,1,1,1,1,1,1): A122265
recurrence, linear, order 10, (1,2,3,5,6,-1,-1,0,-1,-1): A072827
recurrence, linear, order 10, (10,-45,120,-210,252,-210,120,-45,10,-1): A178393, A085439, A086023
recurrence, linear, order 10, (2,-1,0,0,0,0,0,1,-2,1): A008726
recurrence, linear, order 10, (2,0,-3,0,3,0,0,-2,1): A100779
recurrence, linear, order 10, (3,-3,1,0,0,0,1,-3,3,-1): A011903
recurrence, linear, order 10, (4,-3,-8,14,0,-14,8,3,-4,1): A060099
recurrence, linear, order 10, (4,-6,3,3,-6,3,3,-6,4,-1): A011849
recurrence, linear, order 10, (5,-5,-10,15,11,-15,-10,5,5,1): A001873
recurrence, linear| constant coefficients, <a NAME="recLCC_end">sequences related to (start):</a>
recurrences over rings: A005984
recurrences, of the form  a(n) = k*a(n - 1) +/- a(n - 2), <a NAME="recur1">sequences related to (start):</a>
recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (1) A000032 A002203 A006497 A014448 A087130 A085447 A086902 A086594 A087798 A086927
recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (2) A001946 A086928 A088316 A090300 A090301 A090305 A090306 A090307 A090308 A090309
recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (3) A090310 A090313 A090314 A090316 A087281 A087287 A089772
recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (1) A057079 (and A087204) A007395 A005248 A003500 A003501 A003499 A056854 A086903 A056918 A087799
recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (2) A057076 A087800 A078363 A067902 A078365 A090727 A078367 A087215 A078369 A090728
recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (3) A090729 A090730 A090731 A090732 A090733 A090247 A090248 A090249 A090251 A087265 A065705 A089775
recurrences, of the form| a(n) = k*a(n - 1) +/- a(n - 2), <a NAME="recur1_end">sequences related to (start):</a>
reduced residue system: A070194
reduced totient function psi: A002322*, A002174*, A002396*, A002616
refactorable numbers: A033950*
refactorable, strongly: A141586
reflection coefficients: A007179
regions  , <a NAME="regions">sequences related to (start):</a>
regions formed by lines in plane: A000124, A055503
regions formed by spheres in space: A046127, A014206, A059173, A059174, A059250
regions in regular polygon: see <a href="Sindx_Pol.html#Poonen">Poonen-Rubinstein paper</a>
regions| <a NAME="regions_end">sequences related to (start):</a>
regular connected grpahs, see <a href="Sindx_Gra.html#graphs">graphs, regular connected</a>
regular n-gon with all diagonals drawn: see <a href="Sindx_Pol.html#Poonen">Poonen-Rubinstein paper</a>
regular polyhedra, see: <a href="Sindx_Pol.html#polyhedra">polyhedra, regular</a>
regular polytopes, see: <a href="Sindx_Pol.html#polytopes">polytopes, regular</a>
regular primes: see <a href="Sindx_Pri.html#primes">primes, regular</a>
regular sequences: A003513
Reisel numbers: see <a href="Sindx_Res.html#Riesel">Riesel numbers</a>
Rel DIVIDER
relations on n points: A001173* (unlabeled), A000595* (labeled)
relations, <a NAME="relations">sequences related to (start):</a>
relations, antisymmetric transitive: A091566
relations, antisymmetric: A001174*
Relations, connected, A002501, A002502
Relations, dissimilarity, A006541
Relations, reflexive, A000666, A000250
relations, self-converse: A002500*
relations, symmetric reflexive: A000250*
relations, symmetric: A000666*, A070166
relations, transitive: A006905* A091073*
Relations, ultradissimilarity, A005121
Relations, vacuously transitive, A003041
relations, without symmetry: A030242*
relations: see also A000665, A000957, A000663, A000662, A001377, A001374, A001376, A001375
relations| <a NAME="relations_end">sequences related to (start):</a>
relatively prime pairs of numbers: see <a href="Sindx_Pac.html#pairs_of_relatively_prime_numbers">pairs of relatively prime numbers</a>
relatively prime triples of numbers: see <a href="Sindx_Tri.html#triples_of_relatively_prime_numbers">triples of relatively prime numbers</a>
remove 2's from n: A000265
remove squares!: A002734
rencontres numbers, <a NAME="rencontres">sequences related to (start):</a>
rencontres numbers, triangle of: A008290*
rencontres numbers: A000166*
rencontres numbers: see also A000240, A000387
rencontres numbers:: A000166*, A000387, A000449, A000475
rencontres numbers| <a NAME="rencontres_end">sequences related to (start):</a>
repdigit (repeated digit) numbers: A010785*
repeating substrings: see <a href="Sindx_Do.html#repeat">doubling substrings</a>
repfigit or Keith numbers: A007629*, A06576*
representation degeneracies, <a NAME="representation_degeneracies">sequences related to (start):</a>
representation degeneracies:: A005290, A005292, A005291, A005297, A005299, A005293, A005304, A005294, A005300, A005298, A005303, A005305, A005306, A005295, A005296, A005301, A005302
representation degeneracies| <a NAME="representation_degeneracies_end">sequences related to (start):</a>
representations as sums , etc., <a NAME="representations_as_sums">sequences related to (start):</a>
representations as sums of Fibonacci numbers, A000119, A000121, A006133, A006132
representations as sums of increasing powers, A003315
representations as sums of Lucas numbers, A003263
representations as sums of squares, A006892, A002291, A002611, A002470, A002290, A002610, A002614, A002288, A002612, A002607, A002615, A002292, A002609, A002608, A002613
representations as sums of triangular numbers, A006894, A006893
representations as sums|, etc., <a NAME="representations_as_sums_end">sequences related to (start):</a>
representations of 0, A000980
representations of 1, A002967
representations of symmetric group, A000701
repunit primes: see <a href="Sindx_Pri.html#primes">primes, repunit</a>
repunits: A002275*, A003020
Res DIVIDER
residues, <a NAME="residues">sequences related to (start):</a>
residues, cubic: A040028, A059898, A059914, A001133
Residues:: A003276, A000445, A001134, A001135, A001136
residues| <a NAME="residues_end">sequences related to (start):</a>
resistances: A048211, A051389, A046825, A005840
Reverse Add Then Sort: see <a href="Sindx_Ra.html#RATS">RATS</a>
Reverse and Add! ,  <a NAME="RAA">sequences related to (start):</a>
Reverse and Add!: A001127 (trajectory of 1); A033648 (trajectory of 3); A033670 (trajectory of 89); A006960 (trajectory of 196); A016016, A023109 (length of trajectory); A023108 (do not converge); A061562, A061563 (final term); A067030 (range)
Reverse and Add!: in other bases: A058042, A061561
Reverse and Add!: see also ( 1) A015976 A015977 A015979 A015980 A015982 A015984 A015986 A015988 A015990 A015991 A015992 A015993
Reverse and Add!: see also ( 2) A033649 A033650 A033651 A033652 A033653 A033654 A033655 A033656 A033657 A033658 A033659 A033660
Reverse and Add!: see also ( 3) A033661 A033665 A033671 A033672 A033673 A033674 A033675 A056964 A062128 A062130 A063048
Reverse and Add!: see also ( 4) A063049 A063050 A063051 A063052 A063053 A063054 A063055 A063056 A063057 A063058 A063059 A063060
Reverse and Add!: see also ( 5) A063061 A063062 A063063 A063064 A063065 A063433 A063434 A063435 A065001 A065198 A065199 A065206
Reverse and Add!: see also ( 6) A065207 A065208 A065209 A065210 A065211 A065212 A065213 A065214 A065215 A065216 A065217 A065318
Reverse and Add!: see also ( 7) A065319 A065320 A065321 A065322 A065323 A065324 A065325 A065326 A065327 A066054 A066055 A066056
Reverse and Add!: see also ( 8) A066057 A066058 A066059 A066122 A066123 A066124 A066125 A066126 A066127 A066128 A066129 A066130
Reverse and Add!: see also ( 9) A066131 A066132 A066133 A066144 A066145 A066450 A067284 A067285 A067286 A067287 A067288 A067737
Reverse and Add!: see also (10) A068798 A070001 A070742 A070743 A070744 A070788 A070789 A070790 A070791 A070792 A070793 A070794
Reverse and Add!: see also (11) A070795 A070796 A070797 A070798 A071265 A071266 A072216 A072217 A072218
Reverse and Add!: see also <a href="Sindx_K.html#Kaprekar_map">Kaprekar map sequences</a>
Reverse and Add!: see also <a href="Sindx_Ra.html#RADD">RADD sequences</a>
Reverse and Add!: see also <a href="Sindx_Ra.html#RATS">RATS sequences</a>
Reverse and Add| ,  <a NAME="RAA_end">sequences related to (start):</a>
reversion of series ,  <a NAME="revert">sequences related to (start):</a>
reversion of series: (01) A001002 A002212 A005149 A005264 A005797 A006147 A006195 A006351 A007296 A007297 A007303 A007311
reversion of series: (02) A007312 A007313 A007314 A007315 A007316 A007440 A007852 A011270 A014103 A033321 A033454 A037247
reversion of series: (03) A049122 A049123 A049124 A049125 A049126 A049127 A049128 A049129 A049130 A049131 A049132 A049133
reversion of series: (04) A049134 A049135 A049136 A049137 A049138 A049139 A049140 A049141 A049142 A049143 A049144 A049145
reversion of series: (05) A049146 A049147 A049148 A049171 A049172 A049173 A049174 A049175 A049176 A049177 A049178 A049179
reversion of series: (06) A049180 A049181 A049182 A049183 A049184 A049185 A049186 A049187 A049188 A049189 A050385 A050386
reversion of series: (07) A050387 A050388 A050389 A050390 A050391 A050392 A050393 A050394 A050395 A050396 A050397 A050398
reversion of series: (08) A053550 A053552 A053554 A063018 A063019 A063020 A063021 A063022 A063023 A063024 A063025 A063026
reversion of series: (09) A063027 A063028 A063029 A063030 A063031 A063032 A063033 A063034 A066396 A066397 A066398 A066399
reversion of series: using gfun: see A053552
REVERT transform: see <a href="Sindx_Res.html#revert">reversion of series</a>
rever|sion of series ,  <a NAME="revert_end">sequences related to (start):</a>
rhombic dodecahedral numbers: A005917*, A046142
rhyme schemes: A005000, A005001, A005002, A005003
Riemann hypothesis, <a NAME="RH">sequences related to (start):</a>
Riemann hypothesis, sequences equivalent to: A057641*, A079526*, A057640, A058209*, A058210
Riemann hypothesis, sequences related to: A002410, A079722, A079723, A079724, A067698
Riemann hypothesis| <a NAME="RH_end">sequences related to (start):</a>
Riemann zeta function: see <a href="Sindx_Z.html#zeta_function">zeta function</a>
Riesel numbers, <a NAME="Riesel">sequences related to (start):</a>
Riesel numbers: A003261
Riesel problem: A050412*, A052333*, A040081*, A038699*
Riesel| numbers, <a NAME="Riesel_end">sequences related to (start):</a>
riffle shuffling: see <a href="Sindx_Se.html#shuffle">shuffling</a>
rings (in graph-theoretic sense): A002861, A002862
rings , <a NAME="rings">sequences related to (start):</a>
rings, commutative: A037289*
rings, enumeration of: the main entries are A027623*, A037291*, A037289*, A038538*
rings, nonassociative: A037292*
rings, nonisomorphic and nonantiisomorphic: A038036
rings, self-converse: A037289
rings, semisimple: A038538*
rings, with unit: A037291*
rings: A027623* (need not contain 1, need not be commutative)
rings: see also <a href="Sindx_Ne.html#near_rings">near-rings</a>
rings|, <a NAME="rings_end">sequences related to (start):</a>
Riordan arrays , <a NAME="Riordan_arrays ">sequences related to (start):</a>
Riordan arrays: (01) A000111 A001764 A004070 A008288 A008951 A011782 A026729 A030111 A030528 A033184 A037027 A038207 A039598 A039599 A039683 A046521 A046854 A049020 A049403 A050155
Riordan arrays: (02) A051141 A052179 A053121 A053122 A054335 A054456 A055248 A056242 A056857 A059110 A059260 A059738 A060821 A061554 A062110 A063967 A064189 A065600 A067147 A071919
Riordan arrays: (03) A072405 A073370 A078812 A078937 A078938 A079513 A080245 A081577 A081578 A081580 A084938 A085478 A090299 A091186 A091597 A091698 A092392 A093375 A094527 A094531
Riordan arrays: (04) A094587 A094816 A097609 A097805 A097806 A097807 A097808 A098593 A098599 A098615 A099039 A099040 A099089 A099091 A099092 A099093 A099095 A099096 A099097 A099174
Riordan arrays: (05) A099325 A099326 A099567 A099569 A100218 A101603 A102587 A103136 A103141 A103316 A103778 A104259 A104505 A104551 A104578 A104579 A104580 A104597 A104698 A104709
Riordan arrays: (06) A104762 A104975 A105438 A105522 A105809 A105810 A106180 A106187 A106190 A106195 A106268 A106270 A106478 A106509 A106513 A106516 A106522 A106566 A106828 A107026
Riordan arrays: (07) A107027 A107030 A107065 A107238 A108044 A108045 A109244 A109246 A109264 A109267 A109449 A109466 A109954 A109956 A109960 A109962 A109970 A109971 A109980 A110162
Riordan arrays: (08) A110165 A110168 A110171 A110271 A110291 A110292 A110438 A110439 A110440 A110441 A110506 A110509 A110510 A110511 A110515 A110517 A110518 A110519 A110522 A110813
Riordan arrays: (09) A110814 A111062 A111106 A111146 A111373 A111418 A111526 A111527 A111577 A111594 A111596 A111806 A111959 A111960 A111963 A111965 A112227 A112465 A112466 A112467
Riordan arrays: (10) A112468 A112475 A112477 A112517 A112519 A112552 A112554 A112555 A112743 A112883 A112899 A112971 A112973 A113129 A113143 A113187 A113214 A113310 A113313 A113408
Riordan arrays: (11) A113413 A113678 A113680 A113953 A113955 A114121 A114123 A114164 A114188 A114189 A114192 A114193 A114195 A114283 A114284 A114422 A115356 A115358 A115359 A115361
Riordan arrays: (12) A115363 A115450 A115452 A115512 A115524 A115633 A115713 A115990 A116088 A116089 A116382 A116385 A116389 A116392 A116395 A116412 A116414 A116948 A116949 A117178
Riordan arrays: (13) A117179 A117184 A117185 A117198 A117316 A117352 A117354 A117355 A117362 A117372 A117375 A117377 A117380 A117567 A117568 A118384 A119301 A119302 A119304 A119305
Riordan arrays: (14) A119467 A119879 A120616 A121574 A121575 A121576 A122016 A122431 A122432 A122433 A122438 A122440 A122538 A122542 A122832 A122833 A122848 A122850 A122896 A122897
Riordan arrays: (15) A122908 A122917 A122919 A123486 A123562 A123876 A123878 A123967 A124234 A124237 A124279 A124304 A124305 A124323 A124341 A124369 A124377 A124392 A124394 A124448
Riordan arrays: (16) A124790 A124816 A124819 A125171 A125177 A125690 A125692 A125693 A125694 A125906 A126030 A126075 A127501 A127543 A127631 A127893 A127894 A127895 A127898 A128174
Riordan arrays: (17) A128414 A128417 A128514 A128899 A128908 A129267 A129652 A129684 A129685 A129818 A130777 A131222 A131758 A132964 A133367 A134388 A135552 A136688 A138175 A139375
Riordan arrays: (18) A139377 A141244 A141245 A141342 A141343 A141344 A143679 A143681 A143683 A143685 A146314 A147308 A147309 A147311 A147312 A147703 A147720 A147721 A147723 A147724
Riordan arrays: (19) A147746 A147747 A147750 A151282 A152148 A152150 A152151 A154556 A154602 A154929 A154930 A154948 A154950 A155112 A155161 A155761 A155788 A155862 A155866 A155867
Riordan arrays: (20) A155887 A157002 A157003 A157004 A158454 A158687 A158909 A159764 A159830 A159834 A159853 A159854 A159855 A159965 A159971 A160905 A161009 A161556 A162717
Riordan arrays|, <a NAME="Riordan_arrays _end">sequences related to (start):</a>
Riordan numbers: A005043
Ro DIVIDER
Robbins , <a NAME="Robbins">sequences related to (start):</a>
Robbins constant: A073012
Robbins numbers: A005130*
Robbins numbers: see also  A005160
Robbins numbers: see also <a href="Sindx_Mat.html#ASM">matrices, alternating sign</a>
Robbins triangle: A048601*, A029656/A029638, A102610
Robbins|, <a NAME="Robbins_end">sequences related to (start):</a>
Robinson's constant: A001205*
Rogers-Ramanjuan , <a NAME="Rogers_Ramanjuan">sequences related to (start):</a>
Rogers-Ramanjuan continued fraction: A050203
Rogers-Ramanjuan|, <a NAME="Rogers_Ramanjuan_end">sequences related to (start):</a>
Rogers-Ramanujan identities: A003114*, A003106*, A006141
Roman numerals for n: A006968*
Roman numerals: see also (1) A002904 A002963 A002964 A003587 A003588 A014287 A036741 A036741 A036742 A036743 A036746 A036786
Roman numerals: see also (2) A036787 A036788
Roman numerals: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Ron's sequence: A006255, A066400, A066401
rook tours, <a NAME="rook_tours">sequences related to (start):</a>
rook tours: A003763*, A096121, A006071
rook tours: see also <a href="Sindx_Gra.html#graphs">graphs, Hamiltonian</a>
rook walks: see also <a href="Sindx_Gra.html#graphs">graphs, Hamiltonian</a>
Rooks:: A000903, A006071
rook| tours, <a NAME="rook_tours_end">sequences related to (start):</a>
rooted trees ,  <a NAME="rooted">sequences related to (start):</a>
rooted trees ,  see also <a href="Sindx_Mo.html#mobiles">mobiles</a>, <a href="Sindx_Tra.html#trees">trees</a>
rooted trees , A000081* (unlabeled), A000169* (labeled)
rooted trees, (2,3), A001005
rooted trees, 1-2, A006893
rooted trees, 2-ary, see: rooted trees, binary
rooted trees, 2-colored, A000151, A004113, A005753, A029856, A031148, A032306, A038049, A038053, A038055*, A038057*, A038075, A038077, A052316
rooted trees, 3-ary, see: rooted trees, ternary
rooted trees, 3-colored, A006964, A029857, A038050, A038059*, A038061*, A038076, A038079, A047891
rooted trees, 4-ary, A019498, A036606, A036609-A036614, A036627-A036633
rooted trees, 4-colored, A052763
rooted trees, 5-ary, A019499, A036607, A036615-A036620, A036634-A035540
rooted trees, 5-colored, A052788
rooted trees, 6-ary, A019500, A036608, A036621-A036626, A036641-A036647
rooted trees, 7-ary, A019501
rooted trees, achiral, A003240, A003241*, A005627, A003237
rooted trees, asymmetric (1): A004111*, A005355, A005754, A007560, A022553, A031148, A032101-A032105, A035353, A038075, A038076
rooted trees, asymmetric (2): A038077, A038079, A038081-A038093, A048829-A048832, A052301, A052325, A055327-A055333
rooted trees, AVL, A006265, A029758, A036662
rooted trees, B-trees, A014535, A037026
rooted trees, binary (1): A000108 (Catalan numbers), A000671, A001190* (Wedderburn-Etherington numbers), A001699, A002572, A002844, A004019*
rooted trees, binary (2): A005588, A006223, A006365, A006679, A014167, A014168, A014169, A014171, A019275, A035010, A035102, A036602
rooted trees, binary (3): A036587, A036588, A036589, A036590, A036591, A036592, A036593, A036594, A036595, A036596, A036597, A036589
rooted trees, binary (4): A036599, A036600, A036601, A036656-A036658, A036661, A036774*, A063895
rooted trees, binary, see also: rooted trees, AVL
rooted trees, boron, A000671*
rooted trees, by generators, A007151, A108521*, A108522-A108525
rooted trees, by internal nodes, A108530
rooted trees, carbon, A000678
rooted trees, chiral planted, A005628
rooted trees, codes for, A005517, A005518
rooted trees, composite binary, A035102
rooted trees, constant, A051491, A051492, A051496
rooted trees, directed, A006964*
rooted trees, evolutionary, A007151
rooted trees, fixed points in, A005200*, A005202
rooted trees, game, A048829, A048830, A048831, A048832
rooted trees, genealogical, A003686
rooted trees, Greg, A005264*, A048160, A052300*, A052301
rooted trees, height 02, A000041 (partition numbers), A000110 (Bell numbers), A000551*
rooted trees, height 03, A000235*, A000258, A000552*, A001383, A001970, A036371, A036443, A036627, A036634, A036641, A038082, A048808, A050351
rooted trees, height 04 (1): A000299*, A000307, A000553*, A001384, A007713, A036372, A036419, A036587, A036593, A036609, A036615
rooted trees, height 04 (2): A036621, A036628, A036635, A036642, A038084, A038088, A048809, A050352
rooted trees, height 05 (1): A000342*, A000357, A001385, A007714, A036588, A036373, A036420, A036594, A036610, A036616, A036622
rooted trees, height 05 (2): A036629, A036636, A036643, A036662, A038085, A038089, A048810, A050353
rooted trees, height 06 (1): A000393*, A000405, A034823, A036589, A036374, A036421, A036595, A036611, A036617, A036623, A036630
rooted trees, height 06 (2): A036637, A036644, A038085, A038090, A048811
rooted trees, height 07 (1): A000418*, A001669, A034824, A036590, A036375, A036422, A036596, A036612, A036618, A036624, A036631
rooted trees, height 07 (2): A036638, A036645, A038086, A038091, A048812
rooted trees, height 08 (1): A000429*, A034825, A036376, A036423, A036591, A036597, A036613, A036619, A036625, A036632, A036639
rooted trees, height 08 (2): A036646, A038087, A038092, A048813
rooted trees, height 09, A034826, A036647, A036424, A036592, A036598, A036614, A036620, A036626, A036633, A048814
rooted trees, height 10, A036425, A036599, A048815
rooted trees, height 11, A036426, A036600
rooted trees, height 12, A036427, A036601
rooted trees, height of (1): A001699, A001853, A001854, A001864, A002658, A003686, A005588, A006223, A006893, A007715, A036370
rooted trees, height of (2): A036437, A036606, A036607, A036608, A038081, A038093, A048816, A072638
rooted trees, Husimi, A000237, A035082*, A035086, A035087*, A035351, A035352, A035353, A035357
rooted trees, hybrid binary, A007863, A011270, A011272, A011274
rooted trees, identity: see rooted trees, asymmetric.
rooted trees, increasing: A008292
rooted trees, involution: A032035, A091481*, A091486*, A091488
rooted trees, lableling (Goebel), A061773, A061775, A005517, A005518
rooted trees, leaves, (cont): A055897
rooted trees, leaves, A003227, A008292, A055277*, A055278-A055289, A055302*, A055303-A055313, A055327-A055333
rooted trees, linear, see rooted trees, planar, planted
rooted trees, M-type, A006959, A052315
rooted trees, matched, A005750, A005753, A005754
rooted trees, nodes, A055544
rooted trees, noncrossing, A006629, A023053, A030980, A030981, A030982, A030983, A045721, A045722, A045737, A045738
rooted trees, normalized total height, A000435, A001863
rooted trees, of subsets, A005804, A005172, A036249*, A048802*
rooted trees, ordered, see: rooted trees, planar
rooted trees, oriented, A000151*, A005750, A005753, A005754
rooted trees, partially labeled, A000107, A000444, A000524, A000525
rooted trees, permutation, A005355, A050383*
rooted trees, phylogenetic, A000311, A005804, A006677, A006678, A006679
rooted trees, planar, A000758, A000957, A000958, A001895, A003239*, A007852-A007860, A014300, A014301, A022553, A032010, A032028, A033297, A047891
rooted trees, planar, A106361, A106362
rooted trees, planar, dyslexic (1): A032047, A032048, A032065, A032066, A032068, A032101-A032105, A032119, A032128, A032129*
rooted trees, planar, dyslexic (2): A032132, A032133, A038035*
rooted trees, planar, planted, A000108* (Catalan numbers), A032009, A032027, A032030, A050351, A050352, A050353, A014486
rooted trees, plane,  encodings of <a NAME="RootedTreePlanEncodings">sequences related to (start):</a> (For the subsets of A014486 the sequence in parentheses gives the positions therein.)
rooted trees, plane, encoded as totally balanced binary strings: (01) A014486*, A057517 (A057518), A057119 (A057120), A057122 (A057123), A057547 (A057548), A061855 (A061856)
rooted trees, plane, encoded as totally balanced binary strings: (02) A075165 (A075161), A080069 (A080068), A080118 (A080119), A080263 (A080265), A080293 (A080295), A080299 (A080298)
rooted trees, plane, encoded as totally balanced binary strings: (03) A080973 (A080975), A080971 (A080970), A080981 (A080980), A081292 (A081291),  A083932 (A083934), A083936 (A083930),
rooted trees, plane, encoded as totally balanced binary strings: (04) A083937 (A072795), A083939 (A083938), A083941 (A083940), A002542 (A083942), A084107 (A084108), A085224 (A085223)
rooted trees, plane, encoded| <a NAME="RootedTreePlanEncodings_end">sequences related to (start):</a> (For the subsets of A014486 the sequence in parentheses gives the positions therein.)
rooted trees, planted, A003227, A005202, A006677, A006678, A006679, A006894, A007151
rooted trees, pointed, A000107*, A000243, A000312*, A008295
rooted trees, powers of enumerator, A000106, A000242, A000300, A000343, A000395, A000439, A000529
rooted trees, prime binary, A035010
rooted trees, projective plane: A006079, A006080*, A066317
rooted trees, quartic planted, A000598
rooted trees, red-black, A001131, A001137, A001138
rooted trees, search, A007077 , A007078, A019497-A019501
rooted trees, series-reduced planted (1): A000669, A001678*, A001859, A001860, A031148, A032030, A032068, A032105, A032119
rooted trees, series-reduced planted (2): A032132, A032133, A050381
rooted trees, series-reduced, A000311*, A001679*, A005804, A005805, A006677, A058735, A058737, A059123*, A007827*
rooted trees, spanning, A030438
rooted trees, steric planted, A000625, A000628
rooted trees, symmetries in planted, A003609, A003611, A003613, A003615, A007135, A007136
rooted trees, ternary, A000598*, A002658, A006894, A019497, A036370-A036376, A036419-A036427, A036437, A036443
rooted trees, triangle, A008295, A033185, A034781, A036370, A036437, A036602, A036606, A036607, A036608
rooted trees, trimmed, A002955*, A052318*, A052319
rooted trees, trimmed, see also: <a href="Sindx_Tra.html#trees">trees, with a forbidden limb</a>
rooted trees, unary-binary, A002658, A029766*, A072638
rooted trees, with a forbidden limb, A002955, A014267, A014276
rooted trees, with(out) a primary branch, A027415, A027416
rooted trees: see also (1): A000226, A001257, A003120, A003238, A005373, A006850, A006871, A006900, A006930, A007439, A007562,
rooted trees: see also (2): A027852, A029855, A032305, A036765-A036778, A001257, A050395, A050396, A074045
rooted trees: see also <a href="Sindx_Mo.html#mobiles">mobiles</a>, <a href="Sindx_Tra.html#trees">trees</a>
rooted trees|,  <a NAME="rooted_end">sequences related to (start):</a>
rotation distance: A005152
rough numbers: see <a href="Sindx_Sk.html#smooth">smooth numbers</a>
row sums of a triangle, Maple code for: A151615
royal paths in a lattice: A006318*
Ru DIVIDER
Rubik cube, <a NAME="Rubik">sequences related to (start):</a>
Rubik cube: A005452* A080638* A080583 A060010 A061713 A080601* A080602*
Rubik cube: groups of: A074914 A007458 A054434 A075152 A080656 A080657 A080658 A080659 A080660 A080661 A080662
Rubik cube| <a NAME="Rubik_end">sequences related to (start):</a>
Rudin-Shapiro word: A020985*, A020987*, A005943
Rule 30: see under <a href="Sindx_Ce.html#cell">cellular automata, Rule 30</a>
ruler and compass: A003401
ruler function: A001511
rulers, complete: see <a href="Sindx_Per.html#perul">perfect rulers</a>
rulers, Golomb: see <a href="Sindx_Go.html#Golomb">Golomb rulers</a>
rulers, optimal: see <a href="Sindx_Per.html#perul">perfect rulers</a>
rulers, perfect: see <a href="Sindx_Per.html#perul">perfect rulers</a>
rulers, perfect: see also <a href="Sindx_Go.html#Golomb">Golomb rulers</a>
runs in binary expansion: A005811*
runs, lengths of: A000002
Russian: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Ruth-Aaron numbers: A006145, A006146, A039752, A039753, A054738
r_2(n): A004018
Sa DIVIDER
safe primes: see <a href="Sindx_Pri.html#primes">primes, safe</a>
SAGE program: see A000040, A000045 and many other entries for examples
Salie numbers: A000795*, A005647*
Sally sequence: A006346
Sam Loyd's 15-Puzzle: see <a href="Sindx_Fi.html#Fifteen_Puzzle">Fifteen Puzzle</a>
same upside down: A000787
Sarrus numbers: see <a href="Sindx_Ps.html#pseudoprimes">pseudoprimes</a>
say what you see  , <a NAME="swys">sequences related to (start):</a>
say what you see (applied to n): A045918*, A047842*, A047843*
say what you see (applied to previous term): A005150*, A005151*, A010861, A001388, A063850
say what you see: see also A083671
say what you see| , <a NAME="swys_end">sequences related to (start):</a>
scheduling: see also <a href="Sindx_To.html#tournament">tournaments</a>
Scheme (programming language): see under <A HREF="Sindx_Li.html#ListFunsOfLisp">Index entries for the sequences induced by list functions of Lisp</A>
Schroder is spelled Schroeder in the OEIS
Schroeder  , <a NAME="Schroeder">sequences related to (start):</a>
Schroeder numbers: A006318* A001003*
Schroeder's 1st problem: A000108*
Schroeder's 2nd problem: A001003*
Schroeder's 3rd problem: A001147*
Schroeder's 4th problem: A000311*
Schroeder's problems: see also <a href="Sindx_Par.html#parens">parentheses, ways to arrange</a>
Schroeder| <a NAME="Schroeder_end">sequences related to (start):</a>
Schr\"{o}der is spelled Schroeder in the OEIS
Scott, Dana, sequences: A048736*
Scrabble: A080993, A080994, A113172, A124015
Se DIVIDER
sec(x), Taylor series for: A046976*/A046977*, A000364*/A000142*
sec(x): see also A000111
secant numbers: A000364*
secant-tangent numbers: A000111*
Second moment:: A006733, A006741, A006737
Secret Santa: A102262/A102263
segmented numbers: A002048*
self numbers, <a NAME="self_numbers">sequences related to (start):</a>
self numbers:: A003052*, A003219, A006378
self numbers| <a NAME="self_numbers_end">sequences related to (start):</a>
Self-contained numbers:: A005184
self-describing numbers, <a NAME="SELFDESCRIBING">sequences related to (start):</a>
self-describing numbers: A104784, A108810, A059504, A109775, A109776
self-describing numbers| <a NAME="SELFDESCRIBING_end">sequences related to (start):</a>
self-dual, <a NAME="self_dual">sequences related to (start):</a>
self-dual:: A005137, A003179, A007147, A003178, A001532, A002080, A001206, A006688, A002841, A004104, A001531, A003184, A002077, A004107
self-dual| <a NAME="self_dual_end">sequences related to (start):</a>
self-generating sequences, <a NAME="self_generating">sequences related to (start):</a>
self-generating sequences:: A005041, A007538, A003160, A003045, A003044, A005243, A001149, A005244, A005242, A001856, A003145, A003144, A003157, A003156, A003146
self-generating sequences| <a NAME="self_generating_end">sequences related to (start):</a>
self-inverse sequences: see also <a href="Sindx_Per.html#IntegerPermutation">permutations of the integers, self-inverse</a>
semi-Fibonacci numbers: A030067*
semigroups , <a NAME="semigroups">sequences related to (start):</a>
semigroups : A001423*, A023814*, A027851*, A079175
semigroups, asymmetric: A058104*, A058105, A058106, A058107*, A058113-A058115, A058168-A058170
semigroups, by idempotents: A002786, A002787, A002788, A005591, A006966, A058108*, A058109-A058122, A058123*, A058166*, A058167-A058170
semigroups, commutative: A001426*, A006966, A023815*, A058105, A058116, A058117, A058167, A058168, A079201
semigroups, idempotent: A002788*, A006966, A030449, A030450, A058112*, A058115, A058122
semigroups, inverse: A001428*
semigroups, non-commutative: A079198, A079199, A079180
semigroups, numerical: A007323
semigroups, regular: A001427
semigroups, relation: A007903
semigroups, self-converse: A029851*, A058106, A058118-A058122, A058169
semigroups, with identity: see <a href="Sindx_Mo.html#monoids">monoids</a>
semigroups: see also <a href="Sindx_Mo.html#monoids">monoids</a>
semigroups: see also A030450, A079207, A079208, A079209, A079241, A079242, A079243, A079244, A079245
semigroups|, <a NAME="semigroups_end">sequences related to (start):</a>
semiorders: A006531
semiperfect numbers: A005835*
semiprimes (or semi-primes):  <a NAME="semiprime">sequences related to (start):</a>
semiprimes (or semi-primes): A001358*, A072000 ("pi"), A064911, A066265
semiprimes: see also <a href="Sindx_Al.html#ALMOSTPRIMES">almost primes</a>
semiprimes| (or semi-primes):  <a NAME="semiprime_end">sequences related to (start):</a>
separating families: A007600
sequence and first differences include all numbers, etc.:  <a NAME="sdian">sequences related to (start):</a>
sequence and first differences include all numbers, etc.: A005228*, A030124, A037257, A037258, A037259, A061577, A140778, A129198, A129199
sequence and first differences include all numbers, etc.: A100707, A093903, A005132, A006509, A081145, A099004
sequence and first differences include all numbers, etc.: see also <a href="Sindx_Ho.html#Hofstadter">Hofstadter sequences</a>
sequence and first differences include all numbers, etc.|  <a NAME="sdian_end">sequences related to (start):</a>
sequences by number of increases: A000575
sequences depending on A-numbers in OEIS: see <a href="Sindx_Di.html#diagonal_sequences">diagonal sequences</a>
Sequences of prescribed quadratic character:: A001990, A001992, A001988, A001986
sequences offering a monetary reward, <a NAME="tiny4">sequences related to (start):</a>
sequences offering a monetary reward: A030979, A057641, A079526, A058209
sequences offering a monetary reward| <a NAME="tiny4_end">sequences related to (start):</a>
sequences that contain every finite sequence of nonnegative integers, <a NAME="sequences_that_contain_every_finite_sequence">sequences related to (start):</a>
sequences that contain every finite sequence of nonnegative integers: A067255 A108730 A108731 A098280 A098281 A098282 A108244 A108736 A108737 A055932 A066099
sequences that contain every finite sequence of nonnegative integers| <a NAME="sequences_that_contain_every_finite_sequence_end">sequences related to (start):</a>
sequences that need extending,  <a NAME="extend">(start):</a>
sequences that need extending, challenge problems:  Looking for a good challenge? Try any of the following:
sequences that need extending, challenge problems: A000937 (closed n-snake-in-the-box problem)
sequences that need extending, challenge problems: A003142 (no-3-in-line on 3^n grid)
sequences that need extending, challenge problems: A004137 (maximal number of edges in a graceful graph on n nodes)
sequences that need extending, challenge problems: A006945 (smallest odd number that requires n Miller-Rabin primality tests)
sequences that need extending, challenge problems: A016088 and A046024 (when does Sum 1/p (p prime) exceed n?)
sequences that need extending, challenge problems: A076523 (maximal number of halving lines for 2n points in plane)
sequences that need extending, challenge problems: A081287 (packing squares of sizes 1 to n)
sequences that need extending, challenge problems: A085000 (maximal determinant of an n X n matrix using the integers 1 to n^2)
sequences that need extending, challenge problems: A087725 (n X n generalization of Sam Loyd's Fifteen Puzzle)
sequences that need extending, challenge problems: A087983 (values taken by permanent of n X n (0,1)-matrix)
sequences that need extending, challenge problems: A089472 (values taken by the determinant of a real (0,1)-matrix of order n)
sequences that need extending, challenge problems: A099155 (snake-in-the-box problem)
sequences that need extending, challenge problems: {a(1) = 1, a(2) = 4, a(3) <= 8, a(4) <= 24, a(5) <= 32}, from Erich Friedman, not yet in OEIS: minimum value of k so that k copies each of cubes of sides 1 through n can be used to exactly fill some rectangular box.
sequences that need extending, short sequences that badly need extending: (1) A001220 (Wieferich primes), A003142 (non-collinear points in cube), A007540 (Wilson primes), A048872 (line arrangements), A054909 (even unimodular lattice), A055549 (normal matrices), A058759 and A056287 (Shannon switching function), A074025 (triplewhist tournaments)
sequences that need extending, short sequences that badly need extending: (2) A076337 (Riesel numbers)
sequences that need extending: see also <a href="http://www.research.att.com/~njas/doc/graphs.html">Challenge Problems: Independent Sets in Graphs</a>
sequences that need extending: see also <a href="Sindx_Con.html#conjectures">conjectured sequences</a>
sequences that need extending: see also <a href="Sindx_U.html#numthy">unsolved problems in number theory (selected)</a>
sequences that need extending: see also huge web page with <a href="more.html">full list of sequences that need extending</a>
sequences that need extending|  <a NAME="extend_end">(start):</a>
sequences which agree for a long time but are different, <a NAME="sequences_which_agree_for_a_long_time">sequences related to (start):</a>
sequences which agree for a long time but are different: A004953, A004973, A025646, A025661, A025647, A025653, A084500, A084557, A103127, A103192, A103747, A010918, A019484, A078608, A129935
sequences which agree for a long time but are different| <a NAME="sequences_which_agree_for_a_long_time_end">sequences related to (start):</a>
sequences which grow too rapidly to have their own entries, <a NAME="sequences_which_grow_too_rapidly">sequences related to (start):</a>
sequences which grow too rapidly to have their own entries, see: Ackermann numbers (Comments on A046859), Conway-Guy sequence (Comments on A046859), Friedman sequence (Comments on A014221), Goodstein sequence (Comments on A056041)
sequences which grow too rapidly to have their own entries| <a NAME="sequences_which_grow_too_rapidly_end">sequences related to (start):</a>
sequences whose extension requires factoring large numbers: A031439, A031440, A031442, A082021, A082132, A034970, A084599
sequences with a gap  , <a NAME="sequences_with_a_gap">sequences related to (start):</a>
sequences with a gap (some later term is known) (1): A000043, A001438, A002853, A005136, A006066, A016729, A027623, A037289, A048893,
sequences with a gap (some later term is known) (2): A051070, A063984, A064156, A068314, A068489, A070911, A072127, A072128,
sequences with a gap (some later term is known) (3): A072288, A074025, A077659, A078457, A078714, A078814, A080371, A080372,
sequences with a gap (some later term is known) (4): A080802, A088622, A091295, A091967, A094670, A098472, A098876, A100804,
sequences with a gap (some later term is known) (5): A103833, A105674, A105676, A105677, A109886, A110409, A112822, A113571,
sequences with a gap (some later term is known) (6): A114457, A118710, A119479, A119734, A121154.
sequences with a gap (some later term is known) (7): A002982, A005849, A055233, A064593, A066289.
sequences with a gap (some later term is known) (8): (circulant graphs) A049287, A049288, A049289, A049297, A049309, A060966, A082276
sequences with a gap|, <a NAME="sequences_with_a_gap_end">sequences related to (start):</a>
sequences with a large but finite number of terms: see <a href="Sindx_Fi.html#FINITEBUTLONG">finite sequences with a large number of terms</a>
Serbian: A056597
Serbian: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
series-parallel , <a NAME="series_parallel">sequences related to "series-parallel" (start):</a>
series-parallel networks, approximation to: A058585
series-parallel networks: A000084* A000669* A001572 A001573 A001574 A001575 A001677 A006349 A006350 A006351
series-parallel networks: see also <a href="Sindx_Mo.html#Moon87">Moon (1987), "Some enumerative results on series-parallel networks", sequences mentioned in</a>
series-parallel numbers: A000137 A000163 A000432 A000527 A005840 A007803 A036654 A036655 A048172 A051045 A051389 A053554
series-parallel|, <a NAME="series_parallel_end">sequences related to "series-parallel" (start):</a>
set partitions: see also under <a href="Sindx_Par.html#part">partitions</a>
sets of lists: A000262, A002868
sets: see also under <a href="Sindx_Par.html#part">partitions</a>
sexy prime pairs: A023201, A046117
shadow of constants: A108912, A110557, A110621, A110623
Shannon switching function: A058759*
Shell sort: A003462, A033622, A036562, A036564, A036569, A055875, A055876
Shell sort: see also <a href="Sindx_So.html#sorting">sorting</a>
shift registers , <a NAME="shift_registers">sequences related to (start):</a>
shift registers, enumeration of output sequences: A000013, A000016, A000031
shift registers, enumeration of: A001139
shift registers, periods: A005417
shift registers, see also <a href="Sindx_Ne.html#necklaces">necklaces</a>
shift registers| <a NAME="shift_registers_end">sequences related to (start):</a>
shifts left when transformed, <a NAME="shifts_left_when_transformed">sequences related to (start):</a>
shifts left when transformed:: (1) A007461, A007439, A007560, A007464, A003238, A007562, A007477, A007558, A007462, A007463, A007548, A007469
shifts left when transformed:: (2) A003659, A007460, A007551, A007557, A007561, A007563, A007472, A007549, A007470, A007564, A007556
shifts left when transformed| <a NAME="shifts_left_when_transformed_end">sequences related to (start):</a>
shoe lacing: see <a href="Sindx_La.html#lacings">lacing a shoe</a>
shoelaces: see <a href="Sindx_La.html#lacings">lacing a shoe</a>
shogi (Japanese chess): A062103
short sequences that need extending, see <a href="Sindx_Se.html#extend">sequences that need extending</a>
shuffle , shuffling etc., <a NAME="shuffle">sequences related to (start):</a>
shuffle groups: see <a href="Sindx_Gre.html#groups">groups, shuffle</a>
shuffling (1): A000375 A000376 A002139 A007070 A007071 A007346 A014525 A014766 A014767 A019567
shuffling (2): A024222 A024542 A035485 A035490 A035491 A035492 A035493 A035494 A035499 A035500 A035501 A047992
shuffling (3): A002326* A055388
shuffl| , shuffling etc., <a NAME="shuffle_end">sequences related to (start):</a>
Si DIVIDER
Siegel modular forms or modular group, <a NAME="Siegel">sequences related to (start):</a>
Siegel modular forms or modular group, Poincare series for: A006476 A027633 A027634 A027672 A029143 A051629 A051630
Siegel modular group, order of: A027638 A027639
Siegel modular| group, <a NAME="Siegel_end">sequences related to (start):</a>
Sierpinski , <a NAME="Sierpinski">sequences related to (start):</a>
Sierpinski gasket: see Sierpinski triangle
Sierpinski numbers problem: A040076* A050921* A050412 A052333 A040081 A038699 A033919 A046067 A046068 A014566
Sierpinski triangle: A047999, A001316
Sierpinsky: the preferred spelling in the OEIS is Sierpinski
Sierpinsk| , <a NAME="Sierpinski_end">sequences related to (start):</a>
sieve,  <a NAME="sieve">sequences generated by a (start):</a>
sieve, badly sieved numbers: A066680, A066681
sieve, binary: A007950*
sieve, Eratosthenes: A000040, A004280, A038179, A083140, A083221, A099361
sieve, even: A056533
sieve, Fibonacci: A039672*
sieve, Flavius Josephus: A000960* A047241 A056530 A056531 A099204 A099207 A099243
sieve, generated by a: A002491 A003309 A003310 A003311 A006508 A045954 A119485 A119486
sieve, golden, A099267
sieve, Madore's: A100002
sieve, multilevel: A005209*
sieve, Sierpinski: A047999*, A051679
sieve, Smarandache: A007952*, A028920, A048859
sieve, spiral: A005620 A005621 A005622 A005623 A005624 A005625 A005626
sieve, square: A002960*
sieve, ternary: A007951*
sieve|  <a NAME="sieve_end">sequences generated by a (start):</a>
sigma(n) , <a NAME="SIGMAN">sequences related to (start):</a>
sigma(n) = sum of divisors of n: A000203* (also called sigma_1(n))
sigma(n): records: A034885, A002093, A007626
sigma(n): see also <a href="Sindx_Su.html#sums_of_divisors">sums of divisors</a>
sigma(n): see also A002192, A051444, A004394
sigma_0(n): A000005 (number of divisors of n)
sigma_1(n): A000203 (sum of divisors of n)
sigma_k(n), the sum of the k-th powers of the divisors of n: for k= 0,...,9: A000005, A000203, A001157, A001158, A001159, A001160, A013954, A013955, A013956, A013957
sigma_k(n), the sum of the k-th powers of the divisors of n: for k=10,...,19: A013958, A013959, A013960, A013961, A013962, A013963, A013964, A013965, A013966, A013967
sigma_k(n), the sum of the k-th powers of the divisors of n: for k=20,...,24: A013968, A013969, A013970, A013971, A013972
sigma|(n) , <a NAME="SIGMAN_end">sequences related to (start):</a>
signature sequences  , <a NAME="signature_sequences">sequences related to (start):</a>
signature sequences (1): A007336 A007337 A023115 A023116 A023117 A023118 A023119 A023120 A023121 A023122 A023123 A023124
signature sequences (2): A023125 A023126 A023127 A023128 A023129 A023130 A023131 A023132 A023133 A023134 A035796
signature sequences|, <a NAME="signature_sequences_end">sequences related to (start):</a>
signature: see also <a href="Sindx_Pri.html#prime_signature">prime signature</a>
silver mean, 1+sqrt(2): A014176*
silver number: A060006, A072117
Silverman's sequence: A001462
simple cubic lattice, theta series of: A005875*
simple groups: see <a href="Sindx_Gre.html#groups">groups, simple</a>
simplex , simplices, <a NAME="simplex">sequences related to (start):</a>
simplex, barycentric subdivision of: A002050*
simplices in a cube: A124505, A108973
Simplices:: A002050, A004145, A005461, A005462, A005463, A005464
simplicial arrangements of lines: A003036*
simplicial polyhedra: A000109*
simplicial|, <a NAME="simplex_end">sequences related to (start):</a>
sin(x), <a NAME="SINX">sequences related to (start):</a>
sin(x):: A007119, A007118, A001250, A000965, A003712, A006656, A007301, A002017, A003715, A003717, A003705, A003706, A003709, A003722
sinh(x):: A000965, A003724, A006154, A006656, A003704, A003716, A002084, A003722, A002085
sinh(x)| <a NAME="SINX_end">sequences related to (start):</a>
siteswaps (or site swaps): see under <A HREF="Sindx_J.html#Juggling">juggling</A>
Sk DIVIDER
skat: A027887, A027888
skeins: A007162, A007167
skip 1, take 2, etc, A007607
slicing a cake: A000125*
slicing a torus: A003600*
slicing space: A000127*
sliding block puzzles: see <a href="Sindx_Fi.html#Fifteen_Puzzle">Fifteen Puzzle</a>
slowest increasing sequences:  <a NAME="slic">sequences related to (start):</a>
slowest increasing sequences: ( 1): A000027, A007989, A016062, A037988, A068174, A073628, A076475, A080839, A085262, A093104,
slowest increasing sequences: ( 2): A093105, A094591, A097354, A097473, A001114, A097912, A098080, A098165, A098211, A098754,
slowest increasing sequences: ( 3): A098791, A098949, A098953, A098954, A101222, A101233, A101235, A101237, A101238, A101239,
slowest increasing sequences: ( 4): A101240, A101241, A101242, A101243, A101244, A101247, A101258, A102085, A102150, A102234,
slowest increasing sequences: ( 5): A102235, A102236, A102252, A105771, A105967, A107433, A107478, A107798, A107818, A107835,
slowest increasing sequences: ( 6): A107836, A107927, A108237, A109277, A110095, A121644, A129268, A129459, A129513, A129562,
slowest increasing sequences: ( 7): A129850, A130011, A131194, A131368, A133835, A137355, A153123, A156604, A159619, A168091,
slowest increasing sequences: ( 8): A174722, A176578.
slowest increasing sequences: see also <a href="Sindx_In.html#incbloc">increasing blocks of digits</a>
slowest increasing sequences| <a NAME="slic_end">sequences related to (start):</a>
Slowly converging series:: A001510
Smallest algorithms:: A006457, A006458, A006459
smallest number not a product of earlier terms, <a NAME="smallest_number_not">sequences related to (start):</a>
smallest number not a product of earlier terms: A000028 A026416 A066724 A026477 A050376 A084400
smallest number not a product of earlier terms| <a NAME="smallest_number_not_end">sequences related to (start):</a>
Smarandache , <a NAME="Smarandache">sequences related to (start):</a>
Smarandache numbers: see <a href="Sindx_K.html#Kempner">Kempner-Smarandache numbers</a>
Smarandache-Wagstaff function: A125138, A056983, A056984, A056985
Smarandache-Wellin numbers and primes: A019518, A069151, A046035, A046284, A068670
Smarandache-Wellin numbers and primes: see also A030997, A030996, A068655, A068656
Smarandache|, <a NAME="Smarandache_end">sequences related to (start):</a>
Smith numbers: A006753*
smooth numbers, <a NAME="smooth">sequences related to (start):</a>
smooth numbers: k-rough numbers: k=2, A000027 ; k=3, A005408 ; k=5, A007310 ; k=7, A007775 ; k=11, A008364 ; k=13, A008365 ; k=17, A008366 ; k=19, A166061 ; k=23, A166063
smooth numbers: k-smooth numbers: k=2, A000079 ; k=3, A003586 ; k=5, A051037 ; k=7, A002473 ; k=11, A051038 ; k=13, A080197 ; k=17, A080681 ; k=19, A080682 ; k=23, A080683
smooth numbers| <a NAME="smooth_end">sequences related to (start):</a>
sn: A004005, A060628
sn: see also <a href="Sindx_El.html#elliptic">elliptic functions</a>
snake-in-box problem: A000937*
Snoopy cartoon sequences: A006345, A006346
So DIVIDER
sociable numbers, <a NAME="sociable">sequences related to (start):</a>
sociable numbers, A003416*
sociable numbers, infinitary: A000173*
sociable numbers, unitary: A000173*
sociable numbers| <a NAME="sociable_end">sequences related to (start):</a>
sod (sum of digits): see <a href="Sindx_Su.html#sum_of_digits">sum of digits</a> (main entry)
sodalite: A005893*
Soddy: see <a href="Sindx_Ap.html#APOLLONIAN">Apollonian packings</a>
solid partitions: see <a href="Sindx_Par.html#part">partitions</a>, solid
solitary numbers: A014567*
Solovay-Strassen primality test: A007324
solutions of x^k = 1 in symmetric group, for k=2,3,4,...: see <a href="Sindx_Per.html#perm">permutations, of order dividing k</a>
solutions to x+y=z: A002848, A002849
solvable numbers: A056866
Somos sequences, <a NAME="Somos">sequences related to (start):</a>
Somos sequences: A006720*, A006721*, A006722*, A006723*, A006769
Somos sequences: see also A048736
Somos sequences| <a NAME="Somos_end">sequences related to (start):</a>
songs, <a NAME="songs">sequences related to (start):</a>
songs, popular, sequences from: A038674, A085735, A091978, A060858, A064373, A096582
songs| <a NAME="songs_end">sequences related to (start):</a>
sopf(n) and sopfr(n), <a NAME="SOPF">sequences related to (start):</a>
sopf(n), sum of primes dividing n (without repetition): A008472
sopfr(n), sum of primes dividing n (with repetition): A001414
sopfr(n)| and sopfr(n), <a NAME="SOPF_end">sequences related to (start):</a>
Sophie Germain primes: see <a href="Sindx_Pri.html#primes">primes, Germain</a>
sorting , <a NAME="sorting">sequences related to (start):</a>
sorting, A036604* A001768* A001855* A003071* A006282*
sorting, Batcher parallel sort: A006282
sorting, bridge hands: A065603
sorting, by block moves: A065603
sorting, by list merging: A003071
sorting, by prefix reversal: A058986
sorting, merge sort: A001768
sorting, networks: A003075*, A006245*, A006246*, A006248*
sorting, Shell sort: A003462, A033622, A036562, A036564, A036569, A055875, A055876
sorting: see also (1) A002871 A002872 A002873 A002874 A002875 A027361 A027432 A033622 A036073 A036074 A036075 A036076
sorting: see also (2) A036077 A036078 A036079 A036080 A036081 A036082 A036567 A036569
sorting|, <a NAME="sorting_end">sequences related to (start):</a>
Sp DIVIDER
spaces, <a NAME="SPACES">sequences related to (start):</a>
spaces, linear: see <a href="Sindx_Li.html#linear_spaces">linear spaces</a>
spaces: (1) A001199 A001439 A001548 A001776 A002876 A002877 A014595 A018924 A018925 A031436 A031437 A031438
spaces: (2) A056642 A001776 A007182 A007293 A007473
spaces| <a NAME="SPACES_end">sequences related to (start):</a>
Spanish: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
special numbers: A002116
specific heat, <a NAME="specific_heat">sequences related to (start):</a>
specific heat: (1) A001393 A001408 A002165 A002167 A002169 A002916 A002917 A002918 A002922 A005392 A005400 A005402
specific heat: (2) A010111 A010112 A010113 A010114 A029872 A029873 A029874 A030122 A057376 A057380 A057384 A057388
specific heat: (3) A057392 A057396 A057400 A057404
specific heat| <a NAME="specific_heat_end">sequences related to (start):</a>
spectral arrays, <a NAME="spectral_arrays">sequences related to (start):</a>
spectral arrays: A007068 A007069 A007071 A022158 A022159 A022160 A022161 A022162 A022163 A022164 A022165
spectral arrays| <a NAME="spectral_arrays_end">sequences related to (start):</a>
spectrum of a number: Graham, Knuth and Patashnik in "Concrete Mathematics" define the spectrum of x to be the sequence [floor(x), floor(2x), floor(3x),...]. In the OEIS that is called the <a href="Sindx_Be.html#Beatty">Beatty sequence</a> (q.v.) defined by x.
speed of light: A003678*
spelling and notation , <a NAME="spell">guide to (start):</a>
spelling and notation:  the following are the correct spellings for some words and symbols that are commonly mistyped in the OEIS:
spelling: > (not grth)
spelling: >= (not \ge)
spelling: a(n) for n-th term in sequence (not a[n])
spelling: color (not colour - the OEIS uses US spelling)
spelling: dependent (not dependant)
spelling: dissectable (not dissectible)
spelling: e for 2.718281828... (not E)
spelling: Fibonacci (not fibonacci)
spelling: generalize (not generalise)
spelling: J. S. Bach (not J.S. Bach - a period should be followed by a space, except in hyphenated names like J.-P. Serre)
spelling: log(n) (not ln(x) or Log[x])
spelling: log_10(x) for logs to base 10
spelling: n X n (not n x n, not n by n)
spelling: n-th, m-th, i-th, j-th, etc. (not nth, mth, ith, jth)
spelling: neighbor (not neighbour)
spelling: nilpotent (not "nil-potent")
spelling: nonnegative (not non-negative)
spelling: nonprime (not non-prime)
spelling: nonzero (not non-zero)
spelling: occurring (not occuring)
spelling: Pi for 3.141592654... (not pi)
spelling: prime(n) (not p(n) or Prime(n), etc.)
spelling: recurrence (not recurence)
spelling: semiprime (not semi-prime)
spelling: sin(x) (not Sin[x])
spelling: squarefree (not square-free)
spelling: submatrix (not sub-matrix)
spelling: tetranacci (not Tetranacci)
spelling: tribonacci (not Tribonacci)
spelling: zeros (not zeroes)
spelling| and notation , <a NAME="spell_end">guide to (start):</a>
Sperner families: A007695*
Sperner's theorem: A001405*
sphere, surface area of n-dimensional: A072478/A072479
sphere, vector fields on: A053381
sphere, volume of n-dimensional: A072345/A072346
spherical designs, <a NAME="spherical_designs">sequences related to (start):</a>
spherical designs: A007828, A076868, A076869, A076870
spherical designs| <a NAME="spherical_designs_end">sequences related to (start):</a>
Spheroidal harmonics:: A002692, A002693, A002695
spirals, <a NAME="spirals">sequences related to (start):</a>
spirals, enumeration of: A006775, A006776, A006777, A006778, A006779, A006780
spirals, sequences from: A001107, A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, A002943, A033996, A033988.
spirals| <a NAME="spirals_end">sequences related to (start):</a>
split numbers: A036382
Sq DIVIDER
sqrt(2) etc., <a NAME="SQRT2">sequences related to (start):</a>
sqrt(2), continued cotangent for: A002666*
sqrt(2), continued fraction convergents to: A001333*/A000129*
sqrt(2), decimal expansion of: A002193*; binary expansion: A004539
sqrt(3), decimal expansion of: A002194*
sqrt(n), length of period of continued fraction for: A003285*, A035015, A013943
sqrt(n), nearest integer to, etc.: A000196*, A000194*, A003059*, A000267
sqrt(p), length of period of continued fraction for: A054269*
sqrt(p)| etc., <a NAME="SQRT2_end">sequences related to (start):</a>
SQS: see <a href="Sindx_St.html#Steiner">Steiner quadruple systems</a>
square arrays, indexing: see <a href="a073189.txt">a073189.txt</a>
square lattice  , <a NAME="sqlatt">sequences related to (start):</a>
square lattice (1):: A002976, A002909, A006462, A002907, A004020, A006731, A006808, A006727, A006461, A002908
square lattice (2):: A002890, A006191, A002900, A006725, A005566, A006724, A006143, A005768, A005436, A002931
square lattice (3):: A007290, A005559, A006732, A006734, A006728, A006730, A003304, A002928, A003305, A003493
square lattice (4):: A006733, A006729, A005558, A007288, A005563, A006835, A006189, A006772, A005560, A002979
square lattice (5):: A004018, A006144, A005883, A007215, A003203, A002932, A002906, A001411, A006817, A006192
square lattice (6):: A005401, A003489, A005561, A005569, A007220, A000328, A005555, A006773, A005562, A005402
square lattice (7):: A003198, A005564, A006814, A006815, A006816, A007221, A006142, A007291, A003201, A006726
square lattice (8):: A002927, A005770, A005567, A005769, A005556, A005565, A007222, A005557
square lattice, polygons on: A002931*
square lattice, see also: <a href="Sindx_Th.html#THETA">theta series of square lattice</a>
square lattice, sublattices of: A054345*, A054346*
square lattice, theta series of: A004018*
square lattice, walks on: A001411*
square lattice: see also <a href="Sindx_Cu.html#cubic_lattice">cubic lattice</a>
square lattice| , <a NAME="sqlatt_end">sequences related to (start):</a>
square numbers: A000290*, A001844* (centered)
square pyramidal numbers: A000330*, A005918 (surface)
square root of pi: A002161
square roots , <a NAME="square_roots">sequences related to (start):</a>
square roots of integers (01): A002193 (sqrt(2)), A002194 (sqrt(3)), A002163 (sqrt(5)), A010464 (sqrt(6)), A010465 (sqrt(7)), A010466 (sqrt(8)=2*sqrt(2)), A010467 (sqrt(10)), A010468 (sqrt(11)), A010469 (sqrt(12)=2*sqrt(3)), A010470 (sqrt(13)), A010471 (sqrt(14)), A010472 (sqrt(15)),
square roots of integers (02): A010473 (sqrt(17)), A010474 (sqrt(18)=3*sqrt(2)), A010475 (sqrt(19)), A010476 (sqrt(20)=2*sqrt(5)), A010477 (sqrt(21)), A010478 (sqrt(22)), A010479 (sqrt(23)), A010480 (sqrt(24)=2*sqrt(6)), A010481 (sqrt(26)), A010482 (sqrt(27)=3*sqrt(3)), A010483 (sqrt(28)=2*sqrt(7)), A010484 (sqrt(29)),
square roots of integers (03): A010485 (sqrt(30)), A010486 (sqrt(31)), A010487 (sqrt(32)=4*sqrt(2)), A010488 (sqrt(33)), A010489 (sqrt(34)), A010490 (sqrt(35)), A010491 (sqrt(37)), A010492 (sqrt(38)), A010493 (sqrt(39)), A010494 (sqrt(40)=2*sqrt(10)), A010495 (sqrt(41)), A010496 (sqrt(42)),
square roots of integers (04): A010497 (sqrt(43)), A010498 (sqrt(44)=2*sqrt(11)), A010499 (sqrt(45)=3*sqrt(5)), A010500 (sqrt(46)), A010501 (sqrt(47)), A010502 (sqrt(48)=4*sqrt(3)), A010503 (sqrt(50)=5*sqrt(2)), A010504 (sqrt(51)), A010505 (sqrt(52)=2*sqrt(13)), A010506 (sqrt(53)), A010507 (sqrt(54)=3*sqrt(6)), A010508 (sqrt(55)),
square roots of integers (05): A010509 (sqrt(56)=2*sqrt(14)), A010510 (sqrt(57)), A010511 (sqrt(58)), A010512 (sqrt(59)), A010513 (sqrt(60)=2*sqrt(15)), A010514 (sqrt(61)), A010515 (sqrt(62)), A010516 (sqrt(63)=3*sqrt(7)), A010517 (sqrt(65)), A010518 (sqrt(66)), A010519 (sqrt(67)), A010520 (sqrt(68)=2*sqrt(17)),
square roots of integers (06): A010521 (sqrt(69)), A010522 (sqrt(70)), A010523 (sqrt(71)), A010524 (sqrt(72)=6*sqrt(2)), A010525 (sqrt(73)), A010526 (sqrt(74)), A010527 (sqrt(75)=5*sqrt(3)), A010528 (sqrt(76)=2*sqrt(19)), A010529 (sqrt(77)), A010530 (sqrt(78)), A010531 (sqrt(79)), A010532 (sqrt(80)=4*sqrt(5)),
square roots of integers (07): A010533 (sqrt(82)), A010534 (sqrt(83)), A010535 (sqrt(84)=2*sqrt(21)), A010536 (sqrt(85)), A010537 (sqrt(86)), A010538 (sqrt(87)), A010539 (sqrt(88)=2*sqrt(22)), A010540 (sqrt(89)), A010541 (sqrt(90)=3*sqrt(10)), A010542 (sqrt(91)), A010543 (sqrt(92)=2*sqrt(23)), A01054 4 (sqrt(93)),
square roots of integers (08): A010545 (sqrt(94)), A010546 (sqrt(95)), A010547 (sqrt(96)=4*sqrt(6)), A010548 (sqrt(97)), A010549 (sqrt(98)=7*sqrt(2)), A010550 (sqrt(99)=3*sqrt(11))
square roots, functional: see functional square roots
square roots, of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree.  Then b = A000188(n) is the "inner square root" of n, c = A007913(n), LCM(b,c) = A007947(n) = "squarefree kernel" of n and bc = A019554(n) = "outer square root" of n.
square roots, of primes: A000006
square roots, see also: A006242, A006243
square roots|, <a NAME="square_roots_end">sequences related to (start):</a>
square, truncated: see <a href="Sindx_Tri.html#TRUNC">truncated square</a>
square-free: see squarefree
square-full numbers: see squarefull numbers
squared rectangles and squared squares: A002839*, A006983*, A002881, A002962, A014530, A005842
squared squares: see squared rectangles
squarefree , <a NAME="square_free">sequences related to (start):</a>
squarefree graphs: A006786, A006855
squarefree numbers, gaps between: A020753, A020754, A020755
squarefree numbers: A005117*, complement is A013929.
squarefree numbers: see also A007424, A007674, A007675, A013929, A039956, A048640, A053797, A053806, A045882, A051681, A056912
squarefree sequences: A005678, A005679, A005680, A005681
squarefree sequences: see also <a href="Sindx_Th.html#Thue_Morse">Thue-Morse sequences</a>
squarefree sequences: see also squarefree words
squarefree words: A006156, A007413, A170823
squarefree words: see also squarefree sequences
squarefree|, <a NAME="square_free_end">sequences related to (start):</a>
squarefull numbers: A001694*, A013929*
squarefull numbers: see also A076871, A076872
squares,  A000290*
squares, in a rectangle: A168339
squares, Latin, see <a href="Sindx_La.html#Latin">Latin squares</a>
squares, magic: see <a href="Sindx_Mag.html#magic">magic squares</a>
squares, packing: A005842
squares, palindromic: see <a href="Sindx_Pac.html#palindromes">palindromic squares</a>
squares, sums of, see under <a href="Sindx_Su.html#ssq">sums of squares</a>
squares, undulating: A016073*
Squares:: A007434, A006716, A002942, A002442, A002441, A002440, A007297, A001844, A007433, A000993
St DIVIDER
stacking boxes: A089054*, A089239, A089055
stacks: A001522*, A001523*, A001524*, A003697
stacks: see also under <a href="Sindx_Par.html#part">partitions</a>
stamp-folding: A001011*
stamp-folding: see <a href="Sindx_Fo.html#fold">folding</a>
Standard deviation:: A007654, A007655
Stanley, <STRONG>Enumerative Combinatorics</STRONG>, <a href="stanley.html"><STRONG>sequences found in</STRONG></a>
stapled intervals: A090318
stapled sequences: see stapled intervals
star numbers, <a NAME="STAR">sequences related to (start):</a>
star numbers: A003154* A006060 A006061 A006062 A045946 A046752 A051673 A054318 A054319 A054320 A055684
star numbers| <a NAME="STAR_end">sequences related to (start):</a>
stars in sky: A053406
statistical models: see under <a href="Sindx_Mo.html#MODELS">models</a>
Stechkin's function: A055004
Steiner systems , <a NAME="Steiner">sequences related to (start):</a>
Steiner systems, quadruple (SQS's): A051390* A124120 A124119
Steiner systems: A001293* (S(5,8,24)
Steiner triple systems (STS's): A001201*, A030128*, A030129*, A051390*, A002885 (cyclic), A006181, A006182, A051391
Steiner triple systems|, <a NAME="Steiner_end">sequences related to (start):</a>
stella octangula numbers: A007588*
Stern's   sequences <a NAME="Stern">and related sequences (start):</a>
Stern's  diatomic sequence: A002487*
Stern's  sequence: A005230*
Stern's and Stern-Brocot sequences: see also (1) A002435 A002487 A003686 A006842 A006843 A006893 A008619 A014172 A014173 A014175 A020652 A038567
Stern's and Stern-Brocot sequences: see also (2) A042978 A046126 A049455 A049456 A054204 A054424 A054427 A057114 A057115 A057431 A057432 A059893
Stern's and Stern-Brocot sequences: see also (3) A064881 A064882 A064883 A064884 A064885 A064886 A065249 A065250 A065625 A065658 A065659 A065674
Stern's and Stern-Brocot sequences: see also (4) A065675 A065676 A065810 A065934 A065935 A065936 A065937 A070878 A070879
Stern-Brocot tree: A007305*/A007306*, A007305*/A047679*, A070880*/A049456*
Stern-Brocot tree: see also <a href="Sindx_Fa.html#Farey">Farey fractions</a>
Stern|'s   sequences <a NAME="Stern_end">and related sequences (start):</a>
Stirling numbers , <a NAME="Stirling">sequences related to (start):</a>
Stirling numbers, associated: A008299* A008306* A000276 A000478 A000483 A000497 A000504 A000907 A001784 A001785
Stirling numbers, associated: see also Stirling numbers, generalized
Stirling numbers, generalized: (1) A000369 A000558 A000559 A001701 A001702 A001705 A001706 A001707 A001708 A001709 A001711 A001712
Stirling numbers, generalized: (2) A001713 A001714 A001716 A001717 A001718 A001719 A001721 A001722 A001723 A001724 A004747 A011801
Stirling numbers, generalized: (3) A013988 A035342 A035469 A046817 A048176 A049029 A049385 A049444 A049458 A049459 A049460 A051141
Stirling numbers, generalized: (4) A051142 A051150 A051151 A051186 A051187 A051231 A051338 A051339 A051379 A051380 A051523
Stirling numbers, generalized: see also Stirling numbers, associated
Stirling numbers, of 1st kind, triangle of: A008275*, A048994*, A048594, A008276
Stirling numbers, of 1st kind: A000254
Stirling numbers, of 1st kind:: A007189, A000914, A000254, A000399, A001303, A000454, A000482, A001233, A000915, A001234
Stirling numbers, of 2nd kind, triangle of: A008277*, A048993*, A019538, A008278
Stirling numbers, of 2nd kind: A000225, A000392, A000453, A000481, A000770, A000771, A049434, A049447, A049435
Stirling numbers, of 2nd kind:: A007190, A000392, A000453, A001297, A000481, A000770, A000771, A001298
Stirling numbers|, <a NAME="Stirling_end">sequences related to (start):</a>
Stirling transform: (1) A003633 A003659 A005172 A005264 A005804 A005805 A006677 A007469 A007470 A050946 A051782 A051784
Stirling transform: (2) A052342 A055896 A055924
Stirling transform: see <a href="transforms.txt">Transforms</a> file
Stirling's formula: A001163/A001164
Stolarsky array: A007064 A007067 A027941 A035487 A035488 A035489 A035506 A035507 A035508 A035509 A035510 A035511
Stopping times:: A007177, A007176, A007186
Storage systems:: A005595, A005594
Stormer numbers : A005528*
Stormer numbers, see also: A002071, A002312, A002314, A005529, A047818
Strobogrammatic numbers: A000787* A007597 A018846 A018847 A018848 A018849
strongly multiplicative means that a(m*n) = a(m)*a(n) for all m and n >= 1
strongly refactorable numbers: A141586
structure constants: A003673, A005600, A007235
structures, differential: A001676*
STS: see <a href="Sindx_St.html#Steiner">Steiner triple systems</a>
Su DIVIDER
subfactorial numbers: A000166*
subgroups of a group, see: <a href="Sindx_Gre.html#groups">groups, maximal number of subgroups in</a>
sublattices  , <a NAME="sublatts">sequences related to (start):</a>
sublattices of given index in generic d-dimensional lattices: A000203 A001615 A001001 A060983 A038991 A038992 A038993 A038994 A038995 A038996 A038997 A038998 A038999
sublattices of given index in various lattices: A003051, A003050, A054345, A054346, A054384
sublattices, similar: Z^2: A000161, A002654; Z^4: A035292; D_4: A045771
sublattices| , <a NAME="sublatts_end">sequences related to (start):</a>
sublime numbers: A081357*. A145769
Subsequences of [1 ... n]:: A007481, A007484, A007455, A007482, A007483
subset sums  , <A NAME="subsetsums">sequences related to (start):</A>
subset sums modulo m, sequences related to: A000016, A000048, A053633, A063776, A064355, A068009, A061857, A061865
subset sums| , <A NAME="subsetsums_end">sequences related to (start):</A>
subtract if you can else add: see <a href="Sindx_Rea.html#Recaman">Recaman's sequence</a>
subtract-a-prime: A014589*
subtract-a-square: A014586*
subway stops, <a NAME="subway">sequences related to (start):</a>
subway stops: A000053 A000054 A001049 A007826 A011554
subway stops| <a NAME="subway_end">sequences related to (start):</a>
subwords: A005943 A006697 A050186 A050430 A050431 A050432 A050433 A051168
Such sequence: see Perrin sequence A001608
sudokus: A107739, A109741
suitable numbers: A000926*
sum of digits , <a NAME="sum_of_digits">sequences related to (start):</a>
sum of digits in powers of m: A001370 (2^n), A004166 (3^n), A065713 (4^n), A066001(5^n), A066002 (6^n), A066003(7^n), A066004 (8^n), A065999 (9^n), A066005 (11^n), A066006 (12^n)
sum of digits, n times: A057147, A003634, A005349, A037478, A052489, A052490, A052491
sum of digits, see also: A003132, A006287, A007471
sum of digits: 1's-counting sequence: number of 1's in binary expansion of n: A000120
sum of digits: A007953*, A010888* (digital root)
sum of digits: digital sum (i.e. sum of digits) of n.: A007953
sum of digits: sum of digits in bases b=10,3,4,...,9 (mod b): A053837-A053844
sum of digits: sum of digits of (n written in base 3).: A053735
sum of digits: sum of digits of (n written in base 4).: A053737
sum of digits: sum of digits of n written in base 5.: A053824
sum of digits: sum of digits of n written in base 6.: A053827
sum of digits: sum of digits of n written in base 7.: A053828
sum of digits: sum of digits of n written in base 8.: A053829
sum of digits: sum of digits of n written in base 9.: A053830
sum of digits: sum of digits of n written in bases 11-16.: A053831-A053836
sum of digits|, <a NAME="sum_of_digits_end">sequences related to (start):</a>
sum of first n squares equals a triangular number: A053611*, A039596, A053612, A136276
sum of primes <= x: A034387
sum-free subsets: A007865, A085489
sum-free subsets: see also A093970 A093971
sum-full subsets: A093970 A093971
Sum: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
sum: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
summarize previous term: A005151*
Summation: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
summation: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
sums of  squares and sums of cubes ,  <a NAME="ssq">sequences related to (start):</a>
sums of 16 squares, number of ways of writing as: A000152*
sums of 2 cubes (1): A003325*, A004999*: not: A022555; A024670 (a^3+b^3, a>b>0), A135998
sums of 2 cubes (2): A086119, A03325, A052276, A120398, A046894
sums of 2 squares, number of ways of writing as: A000161*, A002654*, A004018*
sums of 2 squares, see also under entries for: <a href="Sindx_X.html#tiny1">x^2+y^2 <= n</a>
sums of 2 squares: A001481*, A000404*, A000415*, A002313* (primes), A022544 (not)
sums of 24 squares, number of ways of writing as: A000156*
sums of 3 cubes: A004825*, A003072*, A024981*, A047702*, A025395, A047702*; not: A022561
sums of 3 or fewer squares: A000290, A000404, A063725, A000408, A063691, A005767, A169580, A000378, A001481
sums of 3 squares, allowing zeros: A000378 (the numbers), A005875 (number of ways)
sums of 3 squares, number of ways of writing as: A005875*, A074590 (primitive solutions)
sums of 3 squares: A000378*, A000419*, A004215* (not), A005767, A169580
sums of 3 squares: see also A047809
sums of 4 cubes: A004826; not: A022566
sums of 4 squares, number of ways of writing as: A000118*
sums of 4 squares: A004215*
sums of 4th powers needed to represent n: A002377*
sums of 5 cubes: A004827; not: A069136
sums of 5 squares, number of ways of writing as: A000132*
sums of 6 cubes: A004828, A046040; not: A069137
sums of 6 squares, number of ways of writing as: A000141*
sums of 7 cubes: A004829, A018890; not: A018888
sums of 7 squares, number of ways of writing as: A008451*
sums of 8 cubes: A018889
sums of 8 or 9 cubes: A018888
sums of 8 squares, number of ways of writing as: A000143*
sums of 9 squares, number of ways of writing as: A008452*
sums of consecutives squares give squares: A001032, A097812, A151557
sums of cubes: see sums of 2 cubes, sums of 3 cubes, etc.
sums of distinct cubes: A003997, A001476 (not)
sums of distinct squares: A003995, A001422 (not), A134422
sums of distinct squares| and sums of cubes ,  <a NAME="ssq_end">sequences related to (start):</a>
sums of divisors, <a NAME="sums_of_divisors">sequences related to (start):</a>
sums of divisors: see also <a href="Sindx_Si.html#SIGMAN">sigma(n)</a>
sums of divisors:: A005100, A002093, A007497, A002192, A007503, A007369, A001065, A007370, A000203*, A006872, A006532, A000593, A003624, A001157, A005835, A007594, A007691, A001158, A007371, A007368, A007365, A001159, A007592, A007593, A007372, A007373, A001160
sums of divisors| <a NAME="sums_of_divisors_end">sequences related to (start):</a>
sums of numbers k at a time determine the numbers?: A057716, A074894*
Sums of powers:: A005792, A001481, A000537, A000538, A000539, A000540, A002309, A000541, A002594, A000542, A003294, A007487
sums of squares , <a NAME="sums_of_squares ">sequences related to (start):</a>
sums of squares needed to represent n: A002828*, A151925
sums of squares, sequences related to (01): A000118 A000132 A000141 A000143 A000144 A000145 A000152 A000156 A000404 A000408 A000414 A000415
sums of squares, sequences related to (02): A000419 A000437 A000443 A000446 A000448 A000451 A000534 A000548 A000549 A000925 A001032 A001422
sums of squares, sequences related to (03): A001481 A001944 A001948 A001974 A001983 A001995 A002654 A003995 A003996 A004018 A004144 A004195
sums of squares, sequences related to (04): A004196 A004214 A004215 A004431 A004432 A004433 A004434 A004435 A004436 A004437 A004438 A004439
sums of squares, sequences related to (05): A004440 A004441 A005792 A005875 A006431 A006456 A006532 A007475 A007667 A007692 A008451 A008452
sums of squares, sequences related to (06): A008453 A009000 A009003 A014110 A016032 A018820 A018821 A018822 A018823 A018824 A018825 A020893
sums of squares, sequences related to (07): A022544 A022551 A022552 A024507 A024508 A024509 A024795 A024803 A024804 A025284 A025285 A025286
sums of squares, sequences related to (08): A025287 A025288 A025289 A025290 A025291 A025292 A025293 A025294 A025295 A025296 A025297 A025298
sums of squares, sequences related to (09): A025299 A025300 A025301 A025302 A025303 A025304 A025305 A025306 A025307 A025308 A025309 A025310
sums of squares, sequences related to (10): A025311 A025312 A025313 A025314 A025315 A025316 A025317 A025318 A025319 A025320 A025321 A025322
sums of squares, sequences related to (11): A025323 A025324 A025325 A025326 A025327 A025328 A025329 A025330 A025331 A025332 A025333 A025334
sums of squares, sequences related to (12): A025335 A025336 A025337 A025338 A025339 A025340 A025341 A025342 A025343 A025344 A025345 A025346
sums of squares, sequences related to (13): A025347 A025348 A025349 A025350 A025351 A025352 A025353 A025354 A025355 A025356 A025357 A025358
sums of squares, sequences related to (14): A025359 A025360 A025361 A025362 A025363 A025364 A025365 A025366 A025367 A025368 A025369 A025370
sums of squares, sequences related to (15): A025371 A025372 A025373 A025374 A025375 A025376 A025377 A025378 A025379 A025380 A025381 A025382
sums of squares, sequences related to (16): A025383 A025384 A025385 A025386 A025387 A025388 A025389 A025390 A025391 A025392 A025393 A025394
sums of squares, sequences related to (17): A025414 A025415 A025416 A025417 A028237 A034705 A045698 A045702 A046711 A046712 A047700 A047701
sums of squares, sequences related to (18): A048250 A048261 A048395 A048610 A050795 A050796 A050797 A050798 A050802 A050803 A050804 A051952
sums of squares, sequences related to (19): A052199 A052261 A054321 A000161 A000603 A005653 A047808
sums of squares|, <a NAME="sums_of_squares _end">sequences related to (start):</a>
sums of tetrahedral numbers: A000797, A104246
sums of two distinct prime cubes: A120398
Sum_{k = 0..n} f(k) is standard OEIS notation (rather than sum_k^n, sum for k from 0 to n, etc.)
super-abundant numbers: A004394
superabundant numbers: A004394
superfactorials: A000178*
superior highly composite numbers: A002201
Superpositions of cycles:: A003223, A003225, A003224
superqueens: A007631, A051223, A051224
supersingular primes: A006962
supertangrams: A006074
supertough: A007036
Surfaces:: A000703, A000934
susceptibility  , <a NAME="suscept">sequences related to (start):</a>
susceptibility (1): A002166 A002168 A002170 A002906 A002907 A002910 A002911 A002912 A002913 A002914 A002915 A002919
susceptibility (2): A002920 A002921 A002923 A002924 A002925 A002926 A002927 A002978 A002979 A003119 A003194 A003195
susceptibility (3): A003220 A003279 A003488 A003489 A003490 A003491 A003492 A003493 A003494 A003495 A005399 A005401
susceptibility (4): A007214 A007215 A007216 A007217 A007218 A007277 A007278 A007287 A007288 A008547 A008574 A010039
susceptibility (5): A010040 A010041 A010042 A010043 A010044 A010045 A010046 A010047 A010115 A010116 A010117 A010118
susceptibility (6): A010119 A010556 A010579 A010580 A030008 A030046 A054275 A054389 A054410 A054764 A055856 A055857
susceptibility| , <a NAME="suscept_end">sequences related to (start):</a>
Sw DIVIDER
Swedish: A059124
Swedish: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
switchboard problem: A005425
switching classes: A002854*, A006536
switching networks  , <a NAME="switching">sequences related to (start):</a>
switching networks (1): A000808 A000809 A000811 A000812 A000814 A000815 A000817 A000818 A000820 A000821 A000823 A000824
switching networks (2): A000826 A000827 A000829 A000830 A000832 A000833 A000835 A000836 A000838 A000839 A000841 A000842
switching networks (3): A000844 A000845 A000847 A000848 A000850 A000851 A000853 A000854 A000856 A000857 A000859 A000860
switching networks (4): A000862 A000863 A000868 A000869 A000871 A000872 A000874 A000875 A000877 A000878 A000880 A000881
switching networks (5): A000883 A000884 A000886 A000887 A000889 A000890 A000892 A000893 A000895 A000896 A001150 A001152
switching networks: see also <a href="Sindx_Bo.html#Boolean">Boolean functions</a>
switching networks| <a NAME="switching_end">sequences related to (start):</a>
Sylvester's sequence: A000058*
Sym, game of: A006016*
symbols in OEIS: see <a href="Sindx_Sp.html#spell">spelling and notation</a>
symmetric functions of noncommuting variables: A055105, A055106, A055107
symmetric functions: A002120, A002121, A002122, A002123, A002124, A002125, A007323
symmetric group S_n, <a NAME="SYMMETRICGROUP">sequences related to (start):</a>
symmetric group S_n, character table, degrees of irreducible representations for n = 5 through 14: A003869, A003870, A003871, A003872, A003873, A003874, A003875, A003876, A003877, A059796
symmetric group S_n, character table, degrees of irreducible representations, Magma code for: A003875
symmetric group S_n, character table, highest degree irreducible representations of: A003040, A117500
symmetric group S_n, character table, zeros in: A006907*, A006908
symmetric group S_n, character table: (1) A003040 A006907 A006908 A007870 A051748 A051749 A058884 A058886 A060240 A060437 A061064 A061220
symmetric group S_n, character table: (2) A082733
symmetric group S_n, order of: A000142*
symmetric group S_n: see also <a href="Sindx_Per.html#perm">permutations</a>
symmetric group S_n: see also A059171
symmetric group S_n| <a NAME="SYMMETRICGROUP_end">sequences related to (start):</a>
symmetric numbers: A006072, A007284, A046031
S_n, see <a href="Sindx_Sw.html#SYMMETRICGROUP">symmetric group</a>
S_n: see also <a href="Sindx_Per.html#perm">permutations</a>
Ta DIVIDER
t is the first...: A005224*
T-coordinates for arrays: (01) <a NAME="Tcoords">sequences related to (start):</a>
T-coordinates for arrays: (02) The usual coordinates for a triangular array are are T(n,k), with n >= 0 and 0 <= k <= n, as follows:
T-coordinates for arrays: (03) .............T(0,0)
T-coordinates for arrays: (04) .........T(1,0) T(1,1)
T-coordinates for arrays: (05) ......T(2,0) T(2,1) T(2,2)
T-coordinates for arrays: (06) ...T(3,0) T(3,1) T(3,2) T(3,3)
T-coordinates for arrays: (07) ................................
T-coordinates for arrays: (08) with associated generating function T(x,y) = Sum_{n >= 0, 0 <= k <= n} T(n,k) x^n y^k.
T-coordinates for arrays: (09) Sometimes it is more convenient to relabel the entries using U-coordinates U(i,j), i >= 0, j >= 0, i+j = n, as follows:
T-coordinates for arrays: (10) .............U(0,0)
T-coordinates for arrays: (11) .........U(1,0) U(0,1)
T-coordinates for arrays: (12) ......U(2,0) U(1,1) U(0,2)
T-coordinates for arrays: (13) ...U(3,0) U(2,1) U(1,2) U(0,3)
T-coordinates for arrays: (14) ................................
T-coordinates for arrays: (15) with associated generating function U(z,w) = Sum_{i >= 0, j >= 0} U(i,j) z^i w^j.
T-coordinates for arrays: (16) Of course U(x,y) = T(x, y/x), T(x,y) = U(x,xy).
T-coordinates for arrays: (17) E.g. for Pascal's triangle A007318 with T(n,k) = binomial(n,k) we have T(x,y) = 1/(1-x*(1+y)), U(z,w) = 1/(1-z-w), the latter being rather nicer.
T-coordinates for arrays| (18) <a NAME="Tcoords_end">sequences related to (start):</a>
t-designs, spherical: see spherical designs
table (or triangle) , <a NAME="tiny2">sequences related to (start):</a>
table (or triangle) of (1): x+y (A003056*), |x-y| (A049581*), xy (A003991*, A004247*), [x/y] (A003988*), x^y (A003992*, A004248*, A051128*, A051129*), max(x,y) (A003984*, A051125*)
table (or triangle) of (2): min(x,y) (A003983*, A004197*), x mod y (A051126*, A051127*), GCD(x,y) (A003989*, A050873*), LCM(x,y) (A003990*, A051173*), x OR y (A003986*), x XOR y (A003987*), x AND y (A004198*)
table (or triangle) of (3): x divisible by y (A051731*), phi(x/y) (A054523), Moebius(x/y) (A054525)
table: graphs by numbers of nodes and edges: A008406
table| (or triangle) , <a NAME="tiny2_end">sequences related to (start):</a>
take 1, skip 2, etc.: A007606, A007607
take-a-factorial: A014587*
take-a-Fibonacci-number: A014588*
take-a-prime: A014589*
take-a-square: A014586*
take-a-triangle: A019509*
tan(x), Taylor series for: A000182*, A002430*/A036279*
tan(x): see also A000111, A007314, A006229, A001469, A003716, A003705, A003706, A003707, A003708, A003718, A003719, A003720, A003710, A003721, A003700, A003702
tangent numbers , <a NAME="tangent_numbers">sequences related to (start):</a>
tangent numbers, A000182*
tangent numbers, generalized:: A000061, A000176, A002302, A000191, A000318, A000320, A000411, A000464, A002303, A000488, A005801, A000518
tangent numbers, triangle of: A008308*
tangent numbers: see also A007314
tangent numbers|, <a NAME="tangent_numbers_end">sequences related to (start):</a>
tangrams: A006074
tanh(x), Taylor series for: A000182*, A002430*/A036279*
tanh(x):  see also A003711, A003717, A003721, A003723
tatami mats: A000930, A052270
tau(n), number of divisors: A000005*
tau(n), number of divisors: records: A002183, A002182
tau: see also <a href="Sindx_Go.html#GOLDEN">golden ratio phi</a>
tau_k or d_k numbers, number of ordered n-factorizations of n: (for explicit formula see A007425). Table by antidiagonals A077592; for k=1..11 see A000012, A000005, A007425, A007426, A061200, A034695, A111217, A111218, A111219, A111220, A111221.
taxi-cab numbers: A001235*, A011541*, A023050*, A023051, A003826, A047696
taxicab numbers: see taxi-cab numbers
Tchebycheff is spelled <a href="Sindx_Ch.html#Cheby">Chebyshev</a> throughout
Tchebychev is spelled <a href="Sindx_Ch.html#Cheby">Chebyshev</a> throughout
Tchoukaillon (or Mancala) solitaire: A028932* (the main entry), A002491, A007952, A028920*, A028931, A028933
Te DIVIDER
telephone country codes: A055069
tennis ball problem (1): The four sequences T_n, Y_n, A_n, S_n for s=2 are A000108, A000302, A000346, A031970; for s=3, A001764, A006256, A075045, A049235; for s=4, A002293, A078995, A078999, A078516.
tennis ball problem (2): A079486
tensors: A005415 A006237 A006372 A006373 A045901 A050297 A052472
terminology in OEIS: see <a href="Sindx_Sp.html#spell">spelling and notation</a>
ternary continued fractions: A000962, A000963, A000964
ternary quadratic forms: see <a href="Sindx_Qua.html#quadform">quadratic forms</a>, ternary
ternary representation: A005812, A006287, A007734
ternary words: (1) A006156 A045694 A045695 A045696 A045697 A046209 A046211 A051041 A051042 A051043 A053548 A053560
ternary words: (2) A053561 A053562 A053563 A053564
tetrahedral lattice: A007180, A007181
tetrahedral numbers, sums of: A000797, A104246
tetrahedral numbers: A000292*, A005894* (centered)
tetrahedral numbers: see also A002016, A002311
tetrahedron, coloring a: A006008*
tetrahedron, truncated: see <a href="Sindx_Tri.html#TRUNC">truncated tetrahedron</a>
tetrahedron: see also A005893
tetranacci numbers: A001630*, A001631, A000078, A000288
Th DIVIDER
theta functions, see theta series
theta series , <a NAME="THETA">sequences related to (start):</a>
theta series of A_3 lattice: A004015* A005884 A005885 A005886 A005887 A008663 A008664
theta series of A_3* lattice: A004025, A005869, A004024, A004013*
theta series of b.c.c. lattice, A004025, A005869, A004024, A004013*
theta series of Coxeter-Todd lattice: A004010*
theta series of cubic lattice:: A005876, A005877, A005875*, A005878
theta series of diamond lattice:: A005926, A005925*, A005927
theta series of D_3 lattice: A004015* A005884 A005885 A005886 A005887 A008663 A008664
theta series of D_3* lattice: A004025, A005869, A004024, A004013*
theta series of D_4 lattice:: A005880, A005879, A004011*
theta series of D_5 lattice:: A005930
theta series of extremal 72-dimensional lattice: A004675
theta series of E_6 lattice:: A005129, A004007*
theta series of E_7 lattice:: A005932, A005931, A004008*
theta series of E_8 lattice, see: <a href="Sindx_Ea.html#E8">E8 lattice</a>
theta series of f.c.c. lattice: see <a href="Sindx_Fa.html#fcc">f.c.c. lattice</a>
theta series of h.c.p.:: A005871, A005888, A005890, A005889, A005874, A005873, A005872, A004012*
theta series of hexagonal lattice:: A005881, A005882, A004016*
theta series of hexagonal net:: A005929, A005928*
theta series of laminated lattices: see under <a href="Sindx_La.html#laminated">laminated lattices</a>
theta series of Leech lattice: see <a href="Sindx_Lc.html#Leech">Leech lattice</a>
theta series of P_{10b} packing:: A005954
theta series of P_{10c} packing:: A004021
theta series of P_{11a} packing:: A005953
theta series of P_{12a} packing:: A005952
theta series of P_{9a} packing:: A005951
theta series of square lattice: A004018*, A004020 (with respect to edge), A005883 (with respect to deep hole)
theta series of square lattice: see also A057655, A057656, A057961, A057962
theta series of Z lattice: A000122
theta series: see also <a href="Sindx_Eu.html#EXTREMAL">extremal theta series</a>
theta(n), or Chebyshev function theta(n): A035158, A057872, A083535
theta_2(q): A098108
theta_3(q): A000122*
theta_4(q): A002448
theta| series , <a NAME="THETA_end">sequences related to (start):</a>
Third One Lucky game: A006018
three-way splitting of integers: A003622, A003623
threshold functions (1): A000609*, A000615*, A000616, A000617, A000618, A000619, A001527, A001528, A001529, A001530, A001531
threshold functions (2): A001532, A002077, A002078, A002079, A002080, A002833, A003184, A003186, A003187, A003217, A003218
threshold functions , <a NAME="threshold">sequences related to (start):</a>
threshold functions, two-dimensional: A114043
threshold functions: see also <a href="Sindx_Bo.html#Boolean">Boolean functions</a>
threshold functions|, <a NAME="threshold_end">sequences related to (start):</a>
threshold graphs: A005840
Thue-Morse sequence, <a NAME="Thue_Morse">sequences related to (start):</a>
Thue-Morse sequence: A010060*, A001285*
Thue-Morse sequence: see also A007413, A010059
Thue-Morse sequence| <a NAME="Thue_Morse_end">sequences related to (start):</a>
Thue-Morse ternary sequences (closed under a->abc, b->ac, c->b): A005679, A007413, A036577, A036578, A036579, A036580, A036581, A036582, A036583, A036584, A036585, A036586.
tic-tac-toe, <a NAME="TTT">sequences related to (start):</a>
tic-tac-toe: A008907 A048245 A048246 A061526 A061527 A061528 A061529 A061530 A061221
tic-tac-toe| <a NAME="TTT_end">sequences related to (start):</a>
tie, tying a: A000975*
tiered orders: A006860
TITO: A161594
To DIVIDER
toothpick sequence, <a NAME="toothpick">sequences related to (start):</a>
toothpick sequence: A139250
toothpick sequence: see also A139251, A139252, A139253, A147646, A152980
toothpick sequence| <a NAME="toothpick_end">sequences related to (start):</a>
topologies , <a NAME="topologies">sequences related to (start):</a>
topologies : A001930* (unlabeled), A000798* (labeled)
topologies, connected: A001928* (unlabeled), A001929* (labeled)
topologies: see also A006059, A003097, A006057, A006058, A001929, A006056
topologies|, <a NAME="topologies_end">sequences related to (start):</a>
torus, cubes in: A003012
torus, slicing a: A003600
total height of rooted trees: A000435*, A001863*, A001864*
total orders, <a NAME="total_orders">sequences related to (start):</a>
total orders: A007868, A046873
total orders: see also total partitions
total orders| <a NAME="total_orders_end">sequences related to (start):</a>
total partitions: A000311* (labeled), A000669* (unlabeled)
totative: A000010, A118854, A128250, A132952, A132953
totient function phi(n) , <a NAME="totient">sequences related to (start):</a>
totient function phi(n) : A000010*
totient function phi(n), does not take these values: A007617*, A005277
totient function phi(n), half-totient function: A023022
totient function phi(n), inverse to: A002181,  A006511, A014197, A032446, A032447, A036912, A058277
totient function phi(n), iterating: A003434, A007755, A040176, A049108
totient function phi(n), values of: A002202, A002180
totient function phi(n): see also (1): A003277, A001783, A007694, A002088, A007374, A003275, A007367, A001838
totient function phi(n): see also (2): A005239, A006872, A001274, A007015, A001494, A007366, A001837, A001836, A005867
totient function phi(n): see also (3): A014573, A097942, A105207, A105208
totient function phi(n)|, <a NAME="totient_end">sequences related to (start):</a>
tough polyhedra: A007031
tournaments ,  <a NAME="tournament">sequences related to (start):</a>
tournaments, automorphism groups of: A000198*, A049288
tournaments, number of different tournament graphs: A000568*, A006215*
tournaments, outcomes of: A000568*, A006215*
tournaments, rigid: A003507*
tournaments, round-robin: A000571
tournaments, score sequences in: A000571*, A007747*, A047729*, A047730*, A047731*
tournaments, tournament sequences: A008934*
tournaments: see also (1) A000016, A000570, A001225, A002087, A002638, A003141, A003505, A005779, A006249, A006250, A006475
tournaments: see also (2) A007079, A007150, A013976, A038375, A047656, A000474, A036981, A064120, A000438, A065594
tournaments|,  <a NAME="tournament_end">sequences related to (start):</a>
tours, rook: see <a href="Sindx_Ro.html#rook_tours">rook tours</a>
tours, rook: see also <a href="Sindx_Gra.html#graphs">graphs, Hamiltonian</a>
Tower of Hanoi: see Towers of Hanoi
Towers of Hanoi , <a NAME="Hanoi">sequences related to (start):</a>
Towers of Hanoi: A001511 A005262 A005665 A005666 A007664 A007665 A007798 A045898 A055622 A055661 A055662
Towers of Hanoi: A007664 (4-peg version)
Towers of Hanoi|, <a NAME="Hanoi_end">sequences related to (start):</a>
Tra DIVIDER
traffic light problem: A006043, A006044
trailing zeros in n!: A027868
trails: A006817 A006818 A006819 A006851
transform, hyperbinomial: see hyperbinomial transform A088956
transformations on unit interval: A002823
translation planes: A007375*
transposable numbers, <a NAME="transposable_numbers">sequences related to (start):</a>
transposable numbers: A087502: when move R digit to L, doubles (in base n)
transposable numbers: A092697: when move R digit to L, multiplies by n (finite)
transposable numbers: A094676: when move L digit to R, divides by n, no. of digits is unchanged (finite)
transposable numbers: A097717: when move L digit to R, divides by n (infinite)
transposable numbers: A128857 is the same sequence as A097717 except that m must begin with 1.
transposable numbers: A146088: when move R digit to L, doubles (in base 10)
transposable numbers| <a NAME="transposable_numbers_end">sequences related to (start):</a>
transpositions: A001540 A013927 A029697 A029698 A029699 A029700 A051864 A055091
tree, Stern-Brocot, see <a href="Sindx_St.html#Stern">Stern-Brocot tree</a>
tree, unary-binary, definition: A029766
trees ,  <a NAME="trees">sequences related to (start):</a>
trees ,  see also <a href="Sindx_Ro.html#rooted">rooted trees</a>
trees , A000055* (unlabeled), A000272* (labeled), A000081* (rooted unlabeled)
trees, 2-colored, A004114, A007141, A007143, A036251, A038054, A038056*, A038058*, A038078, A052317
trees, 3-colored, A007142, A007144, A036252, A038060*, A038062*, A038080
trees, 3-valent, A000672*, A000673, A000675, A003692, A006570, A036361, A036362, A036363
trees, 4-valent, see trees, quartic
trees, 5-valent, A036648, A036649, A036650*
trees, 6-valent, A036651, A036652, A036653*
trees, achiral, A005629*, A005627, A003244, A003243, A003237, A003241, A003240
trees, alternating, A007889
trees, asymmetric, A000220*, A005354, A005755, A038078, A038080, A048828, A052303, A052326, A055334-A055339
trees, automorphism group of, A001013
trees, average height of rooted labeled: A000435*
trees, balanced ordered, A007059
trees, balanced, A006265
trees, bicentered, A000200, A000673, A000677*, A036649, A036652
trees, binary rooted: A002572*, A001190*
trees, binary rooted: see also A002844
trees, binary, see also: trees, 3-valent
trees, binary: A000672*, A001699*, A002572*, A001190*, A006223
trees, bisectable, A007098
trees, boron, A000671*, A000672*, A000673*, A000675*
trees, boron, see also trees, 3-valent
trees, by diameter, A000094, A001851, A000147, A000251, A000550, A000306, A000551, A001852, A000554, A000552, A000555, A000553
trees, by height, A001383, A001384, A001385, A002658, A001854, A001864, A000235, A001853, A000299, A001863, A000342, A000393, A000418, A000429, A000435
trees, by stability index, A003428, A003427, A003429
trees, by valency, A006570
trees, carbon, A000678, A005962
trees, centered, A000022, A000675, A000676*, A036648, A036651
trees, chiral, A005628, A005630*
trees, codes for, A005517, A005518
trees, complexity, A036988
trees, constant, A051491, A051492, A051496
trees, coordination sequence, A003945-A003954
trees, diameter 3, A000554*
trees, diameter 4, A000094*, A000555*
trees, diameter 5, A000147*
trees, diameter 6, A000251*
trees, diameter 7, A000550*
trees, diameter 8, A000306*
trees, diameter of, A001851, A001852, A048828
trees, directed, A006965, A006964
trees, E-type, A007141, A007142, A007143, A007144
trees, endpoints, A003228, A003227
trees, endpoints, see trees, leaves
trees, evolutionary, A007151, A007152
trees, exchange, A007905
trees, exponentiation of e.g.f., A006790
trees, fat: A055779
trees, fixed points in, A005200, A005202, A005201
trees, free, A000672, A005588
trees, graceful, A033472
trees, Greg, A005263*, A005264, A048160*, A048159, A052302*, A052303
trees, H*-palindromic, A051174
trees, heap ordered, A001059
trees, hexagon, A004127
trees, homeomorphically irreducible: see trees, series-reduced
trees, Husimi, A000083, A000314, A035351, A035352, A035353, A035356, A035357, A035085*, A035088*
trees, identity: see trees, asymmetric
trees, in wheel, A002985
trees, indecomposable: A124593
trees, intransitive, A007889
trees, labeled, A001258, A007106
trees, leaves, (cont.): A055541
trees, leaves, A003228, A055290*, A055291-A055301, A055314*, A055315-A055324, A055334-A055339
trees, Leech labeling problem, A007187
trees, leftist, A006196*
trees, log of e.g.f., A006802
trees, M-type, A006959
trees, matched, A005751, A005753, A005754, A005750, A005755
trees, nodes, A055543
trees, of subsets, A005173, A005174, A005175, A005640, A005805, A036250*, A038052*
trees, oriented, A000151, A000238, A000238*, A007748, A007835
trees, partially labeled, A000107, A000524, A000243, A000269, A000444, A000485, A000525, A000526
trees, path length, A027874
trees, permutation, A005355
trees, phylogenetic: A000311*, A005805, A006677, A005804, A005640, A006679, A006681, A006682, A006678, A006680
trees, planar, A002995*, A003092, A003093, A005354, A006241, A006963, A006082, A006080, A003239, A001895, A006081, A006079
trees, planar, A106363
trees, plane: see trees, planar
trees, planted: see <a href="Sindx_Ro.html#rooted">rooted trees</a>
trees, powers of g.f., A000106, A000242, A000300, A000343, A000395, A000439, A000529, A006706
trees, projective plane, A006079, A006080, A006081, A006082
trees, quartic: A000022, A000200, A000602*, A010372, A010373, A036506, A000598*
trees, Ramsey theorem for: A004401
trees, reversion of g.f., A007315, A037247*
trees, rooted: A000081* (unlabeled), A000169* (labeled)
trees, rooted: see also <a href="Sindx_Ro.html#rooted">rooted trees</a>
trees, rotation distance between, A005152
trees, Schroeder, A010683
trees, search, see: <a href="Sindx_Ro.html#rooted">rooted trees, search</a>
trees, series-reduced: A000014*, A000311*, A005512*, A059123*, A007827*, A002792*, A007831, A062136, A034851, A064060
trees, shapes of: A006265
trees, signed, A000060
trees, spanning (1): A003690, A003691, A003696, A003733, A003734, A003739, A003740, A003745, A003746, A003751, A003753, A003755
trees, spanning (2): A003756, A003761, A003762, A003767, A003768, A003773, A003774, A003779, A003780, A005822, A006237, A006238
trees, spanning (3): A007725, A007726, A020871, A030019
trees, spectra of, A006610
trees, squares of, A001256
trees, stability index of, A003427, A003428, A003429
trees, stable, A003426
trees, Steiner, A011798
trees, steric, A000628, A000625
trees, symmetries in, A003612, A003616, A003609, A003610, A003614, A003611, A007136, A003615, A007135, A003613
trees, ternary, A001764*, A002707*
trees, triangle of, A034799, A034800
trees, trimmed, A002988*, A052320*, A002955
trees, trimmed, see also: trees, with a forbidden limb
trees, two-colored, A004114, A004113
trees, Weiner index, A051175
trees, with a forbidden limb, A002990, A002991, A002992, A002989, A014265, A014266, A014270-A014274, A014277-A014281, A052320, A052323, A052326
trees, with bicentroid, A010373, A000677*
trees, with centroid, A010372, A000676*
trees: see also <a href="Sindx_Ro.html#rooted">rooted trees</a>
trees: see also A007830, A066319
trees|,  <a NAME="trees_end">sequences related to (start):</a>
Tri DIVIDER
tri-perfect numbers: A005820
triangle of x+y, etc.: see entries under: <a href="Sindx_Ta.html#tiny2">table of ...</a>
triangle, coloring a: see <a href="Sindx_Coi.html#coloring">coloring a triangle</a>
triangle: graphs by numbers of nodes and edges: A008406
Triangles, A006066, A006947, A007237
triangles, by perimeter: A005044*
triangular arrays of integers ,  see under: <a href="Sindx_Ta.html#tiny2">table (or triangle) of numbers</a>
triangular arrays of integers, enumeration of special: A003402, A003403
triangular arrays, indexing: see <a href="Sindx_Ta.html#Tcoords">T-coordinates for arrays</a>
triangular arrays, indexing: see also <a href="a073189.txt">a073189.txt</a>
triangular lattice: see <a href="Sindx_Aa.html#A2">A2 lattice</a>
triangular numbers, A000217*, A005448* (centered)
triangular numbers, partitions into: A007294*
triangular numbers, sums of three: A002097, A053604
triangular numbers, sums of two: A051533*, A053603*, A051611
triangular numbers: see also <a href="Sindx_Eu.html#EYPHEKA">EYPHEKA!</a>
triangular numbers: see also A002636, A007438, A007437, A002817
triangular square numbers: A001110*, A001109
triangular triples: A005044, A002620
triangulations (1): A000103 A000109 A000256 A001683 A002709 A002710 A002711 A002712 A002713 A003122 A003123 A003446
triangulations (2): A004305 A005495 A005497 A005498 A005499 A005500 A005501 A005502 A005503 A005504 A005505 A005506
triangulations (3): A005507 A005508 A005509 A005979 A006078 A006674 A007815 A011556 A019503 A019504 A027610 A028441
triangulations (4): A033961 A036572 A036573 A053440
triangulations : see also cube, triangulations of
tribonacci numbers: A000073 A000213 A001590 A003265 A056816 A081172 A145027 A001644
tribulations game, remoteness numbers: A006019
tribulations: A006019, A006020
tricapped prism: A005919, A005920
trigonometric functions which either increase or decrease monotonically: A004112, A016274, A046946, A046947, A046955, A046956, A046959,
trinomials over GF(2) , <a NAME="trinomial">sequences related to (start):</a>
trinomials over GF(2), irreducible: A001153 (Mersenne) A002475 A057460 A057461 A057463 A057474 A057476 A057477 A057478 A057479 A057480 A057481 A057482 A057486 A057646 A057774 A073571 A074710 A074743
trinomials over GF(2), primitive: A001153 (Mersenne), A073726, A073639, A074743, A074744
trinomials over GF(2)|, <a NAME="trinomial_end">sequences related to (start):</a>
trinv: A002024*, see also A002262, A048645
triperfect numbers: A005820
triple factorial numbers: A007661
triples of relatively prime numbers, <a NAME="triples_of_relatively_prime_numbers">sequences related to (start):</a>
triples of relatively prime numbers: A071778*, A100448, A100450
triples of relatively prime numbers| <a NAME="triples_of_relatively_prime_numbers_end">sequences related to (start):</a>
triply perfect numbers: A005820
trivalent graphs, see <a href="Sindx_Gra.html#graphs">graphs, trivalent</a>
truncatable primes  <a NAME="tprime">sequences related to (start):</a>
truncatable primes (1): A003459 A020994 A023107 A024770 A024785 A050986 A050987 A052023 A052024 A052025 A055521 A060825
truncatable primes (2): A076586 A076623 A078604 A085248 A085733 A086673 A086697 A094335 A101115 A103443 A103463 A103483
truncatable primes (3): A125590 A127698 A127889 A127890 A127891 A127892 A129669 A129670 A129671 A129672 A129673 A129692
truncatable primes (4): A129693 A129940 A129941 A129942 A129943 A129944 A129945 A132394 A133757 A133758 A137812 A144714
truncatable primes| <a NAME="tprime_end">sequences related to (start):</a>
truncated  polytopes, <a NAME="TRUNC">sequences related to (start):</a>
truncated cube: A005911, A005912
truncated octahedron: A005910* A038170 A038171 A038180 A038181 A038386 A039741 A057112 A060135
truncated square numbers: A005892
truncated tetrahedron: A005905, A005906*, A038168, A038169
truncated tetrahedron| <a NAME="TRUNC_end">sequences related to (start):</a>
Tu DIVIDER
Turing machines , <a NAME="Turing">sequences related to (start):</a>
Turing machines which halt: A004147*
Turing machines: A052200, A079365
Turing machines: see also <a href="Sindx_Br.html#beaver">Busy Beaver problem</a>
Turing machines|, <a NAME="Turing_end">sequences related to (start):</a>
Turkish: A057435
Turkish: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
twin primes conjecture: see also A093483
twin primes constant: A065645 (continued fraction), A005597 (decimal expansion), A065646 (denominators of convergents to twin prime constant), A065647 (numerators), A062270, A062271; A065421 (sum of reciprocals of twin primes)
twin primes, <a NAME="twin_primes">sequences related to (start):</a>
twin primes: see also <a href="Sindx_Pri.html#primes">primes, twin</a>
twin primes| <a NAME="twin_primes_end">sequences related to (start):</a>
two consecutive residues: A000236
two-way infinite sequences   <a NAME="2wis">sequences related to (start):</a>
two-way infinite sequences (01): Many sequences can be extended backwards in a natural way. For example, the Fibonacci numbers (A000045) extend backards to give the two-way infinite sequence
two-way infinite sequences (02): ..., -21, 13, -8, 5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, ..., satisfying F(n) = F(n-1) + F(n-2) = -(-1)^n F(-n) for all n.  The backwards portion here is the same sequence but with signs, which is quite common, but in general a different sequence is obtained.
two-way infinite sequences (03): The following is a list of two-way infinite sequences. A pair in parentheses indicates that the backwards and forwards sequences are different. This entry is based on communications from Michael Somos.
two-way infinite sequences (04): A000032 A000045 A000096 A000217 A000290 A000292 A000330 A000330 A000447 A001075 A001108 A001109
two-way infinite sequences (05): A001541 A001570 A001653 A001654 A001687 A001840 A001844 A001871 A001906 A002315 A002492 A002530
two-way infinite sequences (06): A002620 A003499 A004524 A004525 A005044 A005248 A005686 A005900 A006221 A006368 A006368 A006369
two-way infinite sequences (07): A006498 A006720 A006721 A006722 A006723 A006723 A006769 A007531 A007598 A007980 A008500 A008616
two-way infinite sequences (08): A008669 A008805 A011655 A011783 A014125 A014523 A014696 A027468 A028242 A029011 A029153 A029177
two-way infinite sequences (09): A029341 A030267 A030451 A035007 A039959 A047273 A047588 A048736 A051111 A051263 A054318 A056925
two-way infinite sequences (10): A058232 A059029 A059502 A060544 A063208 A064268 A065113 A074061 A075839 A077982 A078495 A078529
two-way infinite sequences (11): A080891 A081555 A082290 A082291 A083039 A083040 A083043 A084964 A089498 A092695 A092886 A093178
two-way infinite sequences (12): A096386 A099270 A102276 A103221 A105371
two-way infinite sequences (13): (A000326, A005449) (A000384, A014105) (A001652, A046090) (A002316, A002317) (A002411, A006002) (A003269, A017817)
two-way infinite sequences (14): (A029578, A065423) (A048739, A077921) (A051792, A053602) (A070893, A082289) (A105426, A144479)
two-way infinite sequences|  <a NAME="2wis_end">sequences related to (start):</a>
two-way splittings of integers: A000028, A000379
two-way splittings of integers: see also <a href="Sindx_Be.html#Beatty">Beatty sequences</a>
twopins positions: A005682 A005683 A005684 A005685 A005686 A005687 A005688 A005689 A005690 A005691
U DIVIDER
U-coordinates for arrays: see <a href="Sindx_Ta.html#Tcoords">T-coordinates for arrays</a>
ugly numbers: A051037
Ulam numbers:  <a NAME="Ulam_num">sequences related to (start):</a>
Ulam numbers: A002858* A078425
Ulam numbers|  <a NAME="Ulam_num_end">sequences related to (start):</a>
Ulam-type sequences: A002858*, A001857, A003664, A007300, A003668, A002859, A003669, A003666, A006844, A003662, A003670, A003667, A003663, A117140
unary representations: A000042
unary-binary tree, definition: A029766
undecagon is spelled 11-gon in the OEIS
undulating numbers: A033619*
undulating squares: A016073
unexplained differences between partition generating functions: A007326, A007327, A007328, A007329, A007330
unhappy numbers: A031177
unidecagon is spelled 11-gon in the OEIS
Unions and sums:: A003430
unique factorization domains: A003172*
unit fractions: see <a href="Sindx_Ed.html#Egypt">Egyptian fractions</a>
unit interval graphs: see <a href="Sindx_In.html#interval">interval graphs</a>
unitary amicable numbers: A002952*, A002953*
unitary divisors of n, number of: A034444*
unitary divisors of n, sum of: A034448*
unitary divisors: see also (1) A002827 A033854 A033857 A033858 A033859 A034460 A034676 A034677 A034678 A034679 A034680 A034681
unitary divisors: see also (2) A034682 A034684 A037176 A046971
unitary perfect numbers: A002827*
unitary phi (or unitary totient) function uphi: A047994*
unpredictable sequence: A007061
unsolved problems in number theory (selected):  <a NAME="numthy">(start):</a>
unsolved problems in number theory (selected): A000069, A001220, A001969, A002496, A036262, A070087, A070089, A070176, A07019, A144914
unsolved problems in number theory: see also <a href="Sindx_Go.html#Goldbach">Goldbach conjecture</a>
unsolved problems in number theory: see also <a href="Sindx_Res.html#RH">Riemann hypothesis</a>
unsolved problems in number theory: see also: <a href="Sindx_Se.html#extend">sequences that need extending</a>
unsolved problems in number theory| (selected):  <a NAME="numthy_end">(start):</a>
untouchable numbers: A005114*
up-down permutations: A000111*
urinals: see <a href="Sindx_Pas.html#payphones">pay-phones</a>
urns: A003125, A003126, A003127, A063169, A063170
usigma(n): A034448*
V DIVIDER
vampire numbers: A020342, A014575, A080718, A144563
vampire numbers: see also A048933 A048934 A048935 A048936 A048937 A048938 A048939
Van der Pol numbers: A003163*, A003164*
Van der Waerden numbers: A002886 A005346 A007783 A007784
Van Lier sequences: A005272
Vassiliev invariants, <a NAME="Vassiliev">sequences related to (start):</a>
Vassiliev invariants: A007293, A007473*, A007474, A007478, A007769, A014591, A014595, A014596, A014605, A018192, A018193
Vassiliev invariants| <a NAME="Vassiliev_end">sequences related to (start):</a>
vector fields: A053381
vers de verres: A151986, A151987
vertex diagrams: A005416
vertex operator algebras  , <a NAME="VOA">sequences related to (start):</a>
vertex operator algebras (1): A028511 A028512 A028518 A028519 A028520 A028521 A028522 A028523 A028524 A028525 A028526 A028527
vertex operator algebras (2): A028528 A028529 A028530 A028531 A028532 A028533 A028534 A028535 A028536 A028537 A028538 A028539
vertex operator algebras (3): A028540 A028541 A028542 A028543 A028544 A028545 A028546 A028547 A028548 A028549 A028550 A028551
vertex operator algebras| , <a NAME="VOA_end">sequences related to (start):</a>
very rapidly growing sequences: see: <a href="Sindx_Se.html#sequences_which_grow_too_rapidly">sequences which grow too rapidly to have their own entries</a>
vile numbers: A003159
Von Staudt-Clausen representation: A000146
voting schemes: A005254 A005256 A005257 A007009 A007010 A007363 A007364 A018223
Wa DIVIDER
walk , <a NAME="WALKS">sequences related to walks (start):</a>
walk, longest, on cube: A005985
Walks, on b.c.c. lattice, A002903, A001666
Walks, on cubic lattice, A002902, A000759, A005572, A005573, A002934, A001412, A000760, A000761, A000762, A005570, A005571
Walks, on diamond lattice, A001395, A001394, A001397, A001396, A001398
walks, on f.c.c. lattice, see <a href="Sindx_Fa.html#fcc">f.c.c. lattice</a>
Walks, on hexagonal lattice, A003289, A003291, A005550, A005552, A003290, A002933, A001334, A007274, A007275, A005553, A007200, A005549, A005551, A007201
Walks, on honeycomb, A001668
Walks, on Kagom\'{e} lattice, A001665
Walks, on Manhattan lattice, A006745, A006744
Walks, on n-cube, A005985
Walks, on square lattice:: (1) A002976, A002900, A005566, A006143, A005559, A005558, A005563, A005560, A006144, A002932, A001411, A005561
Walks, on square lattice:: (2) A005569, A005555, A005562, A005564, A006814, A006815, A006816, A006142, A005567, A005556, A005565, A005557
Walks, on tetrahedral lattice, A007181, A007180
walks, on tetrahedron: A001998*, A051436*
walks, on triangle: A005418*, A051437*
walks, random: A005021 A005022 A005023 A005024 A005025 A007720 A007829
walks, rook: see also <a href="Sindx_Gra.html#graphs">graphs, Hamiltonian</a>
walk|, <a NAME="WALKS_end">sequences related to walks (start):</a>
Wallis pairs: A072182, A072186, A075768, A075769
Wallis' number: A007493
Waring's problem: A002376*, A002377*, A002804*, A079611*
We DIVIDER
Weak Macdonald Conjecture: A005130 A006366
weakly prime numbers: A050249
Weber functions: A001663, A001664
Wedderburn-Etherington numbers: A001190*
Wedderburn-Etherington numbers: see also <a href="Sindx_Par.html#parens">parentheses, ways to arrange</a>
Weierstrass P-function: A002306*/A047817*, A002770
weigh transform , <a NAME="weigh_transform">sequences related to (start):</a>
weigh transform: (1) A003602 A005754 A007560 A007561 A018243 A030244 A031148 A032176 A032178 A033461 A035055 A035056
weigh transform: (2) A035079 A035353 A038001 A038073 A038074 A038075 A038076 A038077 A038079 A038083 A038084 A038085
weigh transform: (3) A038086 A038087 A050342 A050343 A050344 A055327
weigh transform: see also <a href="transforms.txt">Transforms</a> file
weigh transform|, <a NAME="weigh_transform_end">sequences related to (start):</a>
weight distributions of codes  , <a NAME="weight_distributions">sequences related to (start):</a>
weight distributions of codes (1): A001380 A001381 A001382 A001726 A001727 A002289 A002337 A002393 A002394 A002521
weight distributions of codes (2): A002606 A002617 A006006 A006028 A010031 A010032 A010080 A010081 A010082 A010083
weight distributions of codes (3): A010084 A010085 A010086 A010087 A010088 A010089 A010090 A010091 A010092 A010093
weight distributions of codes (4): A010095 A010463 A014487 A014488 A015064 A015065 A015066 A015067 A015068 A015069
weight distributions of codes (5): A015070 A015071 A018235 A018236 A018237 A018895 A018897 A024881 A028238 A028239
weight distributions of codes (6): A028240 A028241 A028299 A028381 A028382 A028383 A028384 A028385 A030030 A030061
weight distributions of codes (7): A030062 A030331 A030639 A030645 A030646 A031136 A031137 A034414
weight distributions of codes| , <a NAME="weight_distributions_end">sequences related to (start):</a>
weight enumerators of codes, see weight distributions of codes
weight enumerators: see also <a href="Sindx_Eu.html#EXTREMAL">extremal weight enumerators</a>
weight of n, <a NAME="WEIGHTOFN">sequences related to (start):</a>
weight of n: A000120*
weight of n: see also <a href="Sindx_Bi.html#BINARYWEIGHT">binary weight</a>
weight of n: see also A138033
weight of n| <a NAME="WEIGHTOFN_end">sequences related to (start):</a>
weird numbers: A006037*, A002975*
Welsh: see also <a href="Sindx_Lc.html#letters">Index entries for sequences related to number of letters in n</a>
Weyl group , <a NAME="Weyl_group">sequences related to (start):</a>
Weyl group W(E7): A005763, A005795, A008583
Weyl group W(E_7), see Weyl group W(E7)
Weyl group W(E_8), Molien series for: A008582
Weyl group|, <a NAME="Weyl_group_end">sequences related to (start):</a>
white numbers: A037043, A037044, A037045
Whitney numbers: A004070*, A007799
whole numbers: A000027*
Wi DIVIDER
Width:: A005020, A005019
Wieferich primes: A001220*, A077816
wild and pseudo-wild numbers, <a NAME="wild">sequences related to (start):</a>
wild and pseudo-wild numbers: A058883*, A058971, A058972, A058973, A058977, A058988, A059175
wild and pseudo-wild numbers| <a NAME="wild_end">sequences related to (start):</a>
Wilson primes: A007540
Wilson primeth recurrence: A007097*
Wilson quotients: A007619
Wilson remainders: A002068
windmills: see <a href="Sindx_Mo.html#mobiles">mobiles</a>
wire, folding a piece of: A001997*, A001998*
Wirsing constant: A007515 A038517
witnesses: A006945
Witt vectors , <a NAME="Witt_vectors">sequences related to (start):</a>
Witt vectors, dimensions: A006973
Witt vectors, reduced: A006177, A006178, A006179, A006180
Witt vectors: A006173, A006174, A006175, A006176
Witt vectors|, <a NAME="Witt_vectors_end">sequences related to (start):</a>
Wolstenholme numbers: A001008, A007406, A007408, A007410
wonderful Demlo numbers: A002477
Woodall , <a NAME="Woodall">sequences related to (start):</a>
Woodall numbers n*2^n-1: A003261*
Woodall numbers: see also <a href="Sindx_Cu.html#Cullen">Cullen numbers</a>
Woodall primes: see <a href="Sindx_Pri.html#primes">primes, Woodall</a>
Woodall|, <a NAME="Woodall_end">sequences related to (start):</a>
word, Fibonacci: see <a href="Sindx_Fi.html#Fibonacci">Fibonacci word</a>
word, Thue-Morse: see <a href="Sindx_Th.html#Thue_Morse">Thue-Morse sequences</a>
Words in certain languages:: A007055, A005819, A007056, A007057, A007058, A051785
World Geodetic System 1984 Ellipsoid: A125123, A125124, A125125, A125126.
worst cases: A005825 A005826 A005827 A006537 A006538 A006539 A006540
Wyt queens game: A004481* A004482 A004483 A004484 A004485 A004486 A004487 A047708
Wythoff , <a NAME="Wythoff">sequences related to (start):</a>
Wythoff array: A035513*, A007065, A007066
Wythoff game (1): A001953 A001954 A001957 A001958 A001959 A001960 A001963 A001964 A001965 A001966 A001967 A001968
Wythoff game (2): A004481 A018219 A046874 A046875 A046876 A047708
Wythoff game, 3-pile: A018219*, A018220-A018222, A051261, A077226
Wythoff game: see also Wyt queens game
Wythoff sequence, lower ([n*tau]): A000201*
Wythoff sequence, upper ([n*tau^2]): A001950*
Wythoff|, <a NAME="Wythoff_end">sequences related to (start):</a>
X DIVIDER
x in S implies 2x not in S: A050292
x*ceiling(x), iterating (1): A073524, A073528, A073529, A068119, A001511, A072340, A073341, A075102, A075103, A075120, A075107, A075108
x*ceiling(x), iterating (2): A023506
x*floor(x), iterating: A087666, A086336, A087663
x/(1-rx-sx^2): see <a href="Sindx_Fi.html#Fibonacci">Fibonacci numbers, generalized</a>
XOR(x,y): A003987*
XOR, bitwise: A048724, A178729, A048725, A178731, A178732, A178733, A178734, A178735, A178736, A038712, A048726, A065621, A003987, A169810, A070883
XOR, see also (1): A003815 A003816 A006582 A007462 A033460 A038554 A038712 A038713 A048706 A048833 A050314
XOR, see also (2): A050600 A050601 A050602 A051124 A051933 A054243
x^2+xy+y^2, of form: A003136*
x^2+y^2 <= n, <a NAME="tiny1">sequences related to (start):</a>
x^2+y^2 <= n: A000328*, A057655*, A051132, A046109, A046110, A046111, A046112
x^2+y^2 <= n| <a NAME="tiny1_end">sequences related to (start):</a>
x^2+y^2+2z^2, of form: A000401*, A055039, A014455 (number of representations)
x^4+y^4+z^4 = t^t: A003828*
x^x, derivative of: A005727*, A005168*
Y DIVIDER
years, perfect: A061013
years: see <a href="Sindx_Ca.html#calendar">calendar</a>
yoke-chains: see <a href="Sindx_Se.html#series_parallel">series-parallel networks</a>
Young tableaux, <a NAME="Young">sequences related to (start):</a>
Young tableaux: A000085 A005700 A005701 A007578 A007579 A007580 A011553 A039622 A039797 A039798 A039917 A047884 A049400
Young tableaux| <a NAME="Young_end">sequences related to (start):</a>
Z DIVIDER
Z-channel, codes for: A010101
Z2[X]-polynomials: see <a href="Sindx_Ge.html#GF2X">GF(2)[X]-polynomials, sequences operating on</a>
zag numbers: A000182*
Zarankiewicz's problem, <a NAME="Zarankiewicz">sequences related to (start):</a>
Zarankiewicz's problem: (1) A001197 A001198 A001840 A001841 A001843 A006613 A006614 A006615 A006616 A006617 A006618 A006619
Zarankiewicz's problem: (2) A006620 A006621 A006622 A006623 A006624 A006625 A006626
Zarankiewicz's problem| <a NAME="Zarankiewicz_end">sequences related to (start):</a>
Zeckendorf expansion, <a NAME="Zeckendorf">sequences related to (start):</a>
Zeckendorf expansion: A035517*, A007895*, A139764, A035614, A107017, A014417
Zeckendorf expansion| <a NAME="Zeckendorf_end">sequences related to (start):</a>
zero sequence: A000004*
zero-sum arrays: A002047
zeros in n!, trailing: A027868
zeta function, <a NAME="zeta_function">sequences related to (start):</a>
zeta function: A002410, A013629, A058303, A065434, A065452, A065453, A072080
zeta function: see also <a href="Sindx_Res.html#RH">Riemann hypothesis</a>
zeta(2): A013661*, A013679*, A002432
zeta(3): A002117*, A013631*, A006221
zeta| function, <a NAME="zeta_function_end">sequences related to (start):</a>
zig numbers: A000364*
Z^1 lattice: see also <a href="Sindx_Cu.html#cubic_lattice">cubic lattice</a>
Z^1, theta series of: A000122*
Z^2 lattice: see <a href="Sindx_Sq.html#sqlatt">square lattice</a>
Z^2 lattice: see also <a href="Sindx_Cu.html#cubic_lattice">cubic lattice</a>
Z^3 lattice: see also <a href="Sindx_Cu.html#cubic_lattice">cubic lattice</a>
Z^4 lattice: see also <a href="Sindx_Cu.html#cubic_lattice">cubic lattice</a>
Z^4, theta series of: A000118*
Z^4, walks on: A010575*
Z^n lattice: see also <a href="Sindx_Cu.html#cubic_lattice">cubic lattice</a>
1 DIVIDER
(+1,-1)-matrices: see <a href="Sindx_Mat.html#binmat">matrices, binary</a>
(+1,0,-1)-matrices: see <a href="Sindx_Mat.html#binmat">matrices, binary</a>
(-1)-Sigma(n): see (-1)sigma(n)
(-1)-sigma(n): see (-1)sigma(n)
(-1)sigma(n): A049060*
(-1)Sigma(n): see (-1)sigma(n)
(-1)sigma(n): see also A034094, A034095, A035479, A057723, A060640, A126602, A126690
(-1)^n: A033999*
(0,1)-matrices: see <a href="Sindx_Mat.html#binmat">matrices, binary</a>
(2-rx)/(1-rx-sx^2): see <a href="Sindx_Fi.html#Fibonacci">Fibonacci numbers, generalized</a>
0,1 then repeat: A000035
0^n: A000007
1's in binary expansion: A000120*
1's sequence: A000012*
1-factorizations, <a NAME="1_factorizations">sequences related to (start):</a>
1-factorizations: A000438, A000474, A000479, A000528, A055495
1-factorizations| <a NAME="1_factorizations_end">sequences related to (start):</a>
1/(1-rx-sx^2): see <a href="Sindx_Fi.html#Fibonacci">Fibonacci numbers, generalized</a>
1/n , <a NAME="1overn">sequences related to decimal expansion of (start):</a>
1/n, decimal expansion of: basic sequences: A114205, A114206, A036275, A051626
1/n, decimal expansion of: see also A051628, A016088, A056055, A007732
1/n, period of expansion of (in various bases): (1) A007732* A007733 A007734 A007735 A007736 A007737 A007738 A007739 A007740 A051626 A036275 A048962
1/n, period of expansion of (in various bases): (2) A048997 A003060
1/p (p prime), number of cycles: A006556*, A054471
1/p (p prime), period of decimal expansion =(p-1)/k: (1) A006883 A097443  A055628 A056157 A056210 A056211 A056212 A056213 A056214 A056215 A056216
1/p (p prime), period of decimal expansion =(p-1)/k: (2) A056217 A098680
1/p (p prime), period of decimal expansion of: A002371* A048595* A007138 A048596 A007498 A007615 A040017 A051627 A048963 A006559 A001913 A046107
1/p (p prime), sum of: A016088, A046024
1/p| , <a NAME="1overn_end">sequences related to decimal expansion of (start):</a>
10*n^2 + 2: A005901*
10-gonal numbers: A001107*, A007585
10^n: A011557*
11-gonal numbers: A051682
11-gonal pyramidal numbers: A007586
11-smooth numbers: A051038
111...111, primes of form: A004022*, A004023*
12-gonal numbers: A051624
12-gonal pyramidal numbers: A007587*
13-gonal numbers: A051865
13-smooth numbers: A080197
14-dimensional lattices: A004535, A047632
14-gonal numbers: A051866
15 puzzle: A087725
15-gonal numbers: A051867
16-gonal numbers: A051868
17-gonal numbers: A051869
17-smooth numbers: A080681
18-gonal numbers: A051870
19-gonal numbers: A051871
19-smooth numbers: A080682
196, trajectory of: A006960
2 DIVIDER
2 is a 4th power residue mod p: A040098*
2 is a cubic residue mod p: A040028*, A014752
2 is a square mod p: A001132*
2 is an mth power residue mod p: A040159 (m=5), A040992 (m=6), A042966 (m=7), A045315 (m=8), A049596 (m=9), A049542 (m=10) - A049595 (m=63)
2-adic valuation: A001511
2-graphs: A002854* A006627* A007830 A007831 A007832 A007833 A007834
2-plexes: A003190
20-gonal numbers: A051872
21-gonal numbers: A051873
22-gonal numbers: A051874
23-gonal numbers: A051875
23-smooth numbers: A080683
2^2^n: A001146*
2^n + 1, primes dividing: A014657, A014661
2^n + 2 is divisible by n: A006517
2^n - 1: A000225*
2^n/n: A000799, A065482, A053638
2^n: A000079*
2^n: ends in n: A064541, A064540, A121319, A113627, A109405
2^n: last digits of: A007185, A016090, A003226, A035383, A064540, A064541, A121319
2^p - 1: A001348*
3 DIVIDER
3-adic valuation: A007949, A051064
3-almost primes: A014612*, A072114 ("pi"), A109251
3-colored: (1) A000685 A006201 A006964 A027710 A029857 A036252 A038050 A038059 A038060 A038061 A038062 A038076
3-colored: (2) A038079 A038080 A053762
3-connected: (1) A000109 A000944 A002880 A005644 A005645 A006290 A006445 A007083 A007084 A007085 A007100 A047051
3-connected: (2) A049337 A052444
3-connected: see also <a href="Sindx_Gra.html#graphs">graphs, 3-connected</a>
3-gonal numbers: see triangular numbers A000217
3-plexes: A003189, A051240
3-polyhedra: A006868
3-smooth numbers: A003586
3-trees: A000672 A002658 A003035 A003611 A003612 A006894 A007135 A007136 A036362
3n - sigma(n): see under <a href="Sindx_N.html#tiny3">n -> 3n - sigma(n)</a>
3x+1 problem , <a NAME="3x1">sequences related to (start):</a>
3x+1 problem, (01): A000546, A001281, A005186, A006370* (image of n), A006460, A006513, A006577* (steps to reach 1), A006666, A006667, A006877, A006878, A006884
3x+1 problem, (02): A006885, A008873, A008874, A008875, A008876, A008877, A008878, A008879, A008880, A008882, A008883, A008884
3x+1 problem, (03): A008908, A010120, A016945, A025586, A025587, A033478, A033479, A033480, A033481, A033491, A033492, A033493
3x+1 problem, (04): A033494, A033495, A033496, A033958, A033959, A039508, A045474, A045475, A045476, A055509, A055510, A056959
3x+1 problem, (05): A060322, A060409, A060410, A060411, A060412, A060413, A060414, A060415, A060445, A060565, A061641, A062052
3x+1 problem, (06): A062053, A062054, A062055, A062056, A062057, A062058, A062059, A062060, A064684, A064685, A066756, A066773
3x+1 problem, (07): A066861, A069206, A069323, A070165, A070167, A072761, A075677, A078719, A078720, A092892, A092893, A112695
3x+1 problem, (08): A116623, A116640, A116641, A128333, A133419, A133420, A133421, A133422, A133423, A133424, A133425, A133426
3x+1 problem, (09): A135282, A138750, A138751, A138752, A138753, A138754, A138757, A139391, A139399, A139435, A139436
3x+1 problem, (10): A131450
3x+1 problem, J. C. Lagarias's <a href="http://arXiv.org/abs/math.NT/0309224">3x+1 Problem Annotated Bibliography</a>
3x+1 problem|, <a NAME="3x1_end">sequences related to (start):</a>
3^n: A000244*
4 DIVIDER
4-gonal numbers: see squares A000290
4^n: A000302*
5-adic valuation: A055457
5-gonal numbers: see pentagonal numbers A000326
5-ish numbers (all digits 0 or 5): A169964
5-smooth numbers: A051037
5^n: A000351*
6-gonal numbers: see hexagonal numbers A000384
6^n: A000400*
7-gonal numbers: see heptagonal numbers A000566
7-smooth numbers: A002473
7^n: A000420*
8-gonal numbers: see octagonal numbers A000567
8^n: A001018*
9-gonal numbers: A001106*, A007584, A028991, A028992
9-ish numbers (decimal expansion contains a 9): A011539
? function, see <a href="Sindx_Me.html#MinkowskiQ">Minkowski's question mark function</a>
9-ish numbers: A011539
9^n: A001019*

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 22:55 EST 2019. Contains 329974 sequences. (Running on oeis4.)