login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053816
Another version of the Kaprekar numbers (A006886): n such that n = q+r and n^2 = q*10^m+r, for some m >= 1, q >= 0 and 0 <= r < 10^m, with n != 10^a, a >= 1 and n an m-digit number.
6
1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728, 4950, 5050, 7272, 7777, 9999, 17344, 22222, 77778, 82656, 95121, 99999, 142857, 148149, 181819, 187110, 208495, 318682, 329967, 351352, 356643, 390313, 461539, 466830, 499500, 500500, 533170, 538461, 609687, 643357
OFFSET
1,2
COMMENTS
Consider an m-digit number n. Square it and add the right m digits to the left m or m-1 digits. If the resultant sum is n, then n is a term of the sequence.
4879 and 5292 are in A006886 but not in this version.
Shape of plot (see links) seems to consist of line segments whose lengths along the x-axis depend on the number of unitary divisors of 10^m-1 which is equal to 2^w if m is a multiple of 3 or 2^(w+1) otherwise, where w is the number of distinct prime factors of the repunit of length m (A095370). w for m = 60 is 20, whereas w <= 15 for m < 60. This leads to the long segment corresponding to m = 60. - Chai Wah Wu, Jun 02 2016
REFERENCES
D. R. Kaprekar, On Kaprekar numbers, J. Rec. Math., 13 (1980-1981), 81-82.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 151.
EXAMPLE
703 is Kaprekar because 703 = 494 + 209, 703^2 = 494209.
MATHEMATICA
kapQ[n_]:=Module[{idn2=IntegerDigits[n^2], len}, len=Length[idn2]; FromDigits[ Take[idn2, Floor[len/2]]]+FromDigits[Take[idn2, -Ceiling[len/2]]]==n]; Select[Range[540000], kapQ] (* Harvey P. Dale, Aug 22 2011 *)
ktQ[n_] := ((x = n^2) - (z = FromDigits[Take[IntegerDigits[x], y = -IntegerLength[n]]]))*10^y + z == n; Select[Range[540000], ktQ] (* Jayanta Basu, Aug 04 2013 *)
Select[Range[540000], Total[FromDigits/@TakeDrop[IntegerDigits[#^2], Floor[ IntegerLength[ #^2]/2]]] ==#&] (* The program uses the TakeDrop function from Mathematica version 10 *) (* Harvey P. Dale, Jun 03 2016 *)
PROG
(Haskell)
a053816 n = a053816_list !! (n-1)
a053816_list = 1 : filter f [4..] where
f x = length us - length vs <= 1 &&
read (reverse us) + read (reverse vs) == x
where (us, vs) = splitAt (length $ show x) (reverse $ show (x^2))
-- Reinhard Zumkeller, Oct 04 2014
(PARI) isok(n) = n == vecsum(divrem(n^2, 10^(1+logint(n, 10)))); \\ Ruud H.G. van Tol, Jun 02 2024
KEYWORD
nonn,nice,base,easy
AUTHOR
EXTENSIONS
More terms from Michel ten Voorde, Apr 11 2001
STATUS
approved