login
A136580
Row sums of triangle A136579.
11
1, 1, 3, 7, 27, 127, 747, 5167, 41067, 368047, 3669867, 40284847, 482671467, 6267305647, 87660962667, 1313941673647, 21010450850667, 357001369769647, 6423384156578667, 122002101778601647, 2439325392333218667
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Incomplete Gamma Function.
Eric Weisstein's World of Mathematics, Exponential Integral.
FORMULA
G.f.: 2/(1-x^2)/G(0), where G(k)= 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
G.f.: Q(0)/(1-x^2), where Q(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
From Vladimir Reshetnikov, Oct 29 2015: (Start):
a(n) = (-1)^n*exp(1)*Gamma(0, 1)/2 - Re(Gamma(0, -1))*exp(-1)/2 + (n+2)!*((-1)^n*Re(Gamma(-n-2, -1))*exp(-1)-Gamma(-n-2, 1)*exp(1))/2, where Gamma(a, x) is the upper incomplete Gamma function.
D-finite with recurrence: a(0) = 1, a(1) = 1, a(2) = 3, a(n) = n*a(n-1) + a(n-2) - n*a(n-3).
E.g.f.: 1/(1-x) + (exp(x-1)*(Ei(1)-Ei(1-x)) + exp(1-x)*(Ei(x-1)-Ei(-1)))/2, where Ei(x) is the exponential integral.
a(n+1)-a(n) = A153229(n+2) = (-1)^(n+1)*A058006(n+1).
(End)
0 = a(n)*(+a(n+1) - a(n+2) - a(n+3) + a(n+4)) + a(n+1)*(+a(n+1) - a(n+2) - 2*a(n+3)) + a(n+2)*(+a(n+2) + a(n+3) - a(n+4)) + a(n+3)*(+a(n+3)) for all n>=0. - Michael Somos, Oct 29 2015
EXAMPLE
a(4) = 27 = sum of row 4 terms, triangle A136579: (1 + 0 + 2 + 0 + 24) = 0! + 2! + 4!.
a(5) = 127 = sum of row 5 terms, triangle A136579: (0 + 1 + 0 + 6 + 0 + 120) = 1! + 3! + 5!
G.f. = 1 + x + 3*x^2 + 7*x^3 + 27*x^4 + 127*x^5 + 747*x^6 + 5167*x^7 + 41067*x^8 + ...
MAPLE
A136580 := proc(n)
add( (n-2*i)!, i=0..floor(n/2) ) ;
end proc: # R. J. Mathar, Jun 04 2021
MATHEMATICA
a[0] = 1; a[1] = 1; a[2] = 3; a[n_] := a[n] = n a[n-1] + a[n-2] - n a[n-3]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jan 09 2008
STATUS
approved