OFFSET
0,3
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..449
Eric Weisstein's World of Mathematics, Incomplete Gamma Function.
Eric Weisstein's World of Mathematics, Exponential Integral.
FORMULA
G.f.: 2/(1-x^2)/G(0), where G(k)= 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 29 2013
G.f.: Q(0)/(1-x^2), where Q(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
From Vladimir Reshetnikov, Oct 29 2015: (Start):
a(n) = (-1)^n*exp(1)*Gamma(0, 1)/2 - Re(Gamma(0, -1))*exp(-1)/2 + (n+2)!*((-1)^n*Re(Gamma(-n-2, -1))*exp(-1)-Gamma(-n-2, 1)*exp(1))/2, where Gamma(a, x) is the upper incomplete Gamma function.
D-finite with recurrence: a(0) = 1, a(1) = 1, a(2) = 3, a(n) = n*a(n-1) + a(n-2) - n*a(n-3).
E.g.f.: 1/(1-x) + (exp(x-1)*(Ei(1)-Ei(1-x)) + exp(1-x)*(Ei(x-1)-Ei(-1)))/2, where Ei(x) is the exponential integral.
(End)
0 = a(n)*(+a(n+1) - a(n+2) - a(n+3) + a(n+4)) + a(n+1)*(+a(n+1) - a(n+2) - 2*a(n+3)) + a(n+2)*(+a(n+2) + a(n+3) - a(n+4)) + a(n+3)*(+a(n+3)) for all n>=0. - Michael Somos, Oct 29 2015
EXAMPLE
MAPLE
MATHEMATICA
a[0] = 1; a[1] = 1; a[2] = 3; a[n_] := a[n] = n a[n-1] + a[n-2] - n a[n-3]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jan 09 2008
STATUS
approved