login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377595
E.g.f. satisfies A(x) = exp( x * A(x) / (1-x) ) / (1-x).
2
1, 2, 11, 103, 1377, 24101, 523813, 13636463, 414246017, 14396807161, 563682761541, 24559156435595, 1178780540094193, 61810491468265541, 3515914378433242997, 215647516162031069191, 14187967957218808201089, 996767406049512569338481, 74478502236949781909301253
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-x/(1-x)^2) )/(1-x).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+k,n-k)/k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^2))/(1-x)))
(PARI) a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+k, n-k)/k!);
CROSSREFS
Cf. A361598.
Sequence in context: A339081 A081716 A334240 * A099713 A277461 A277470
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 14 2024
STATUS
approved