login
A374919
Primes p such that -(p - 1)^p == p (mod 2*p - 1).
0
2, 37, 97, 157, 229, 281, 337, 577, 601, 661, 829, 877, 937, 953, 997, 1009, 1069, 1237, 1297, 1429, 1609, 1657, 2017, 2029, 2089, 2137, 2221, 2281, 2341, 2557, 2617, 2731, 3037, 3061, 3109, 3169, 3181, 3301, 3529, 3697, 3709, 3769, 3877, 4177, 4241, 4261, 4357, 4621, 4801, 4861, 4909
OFFSET
1,1
MATHEMATICA
Select[Prime[Range[700]], PowerMod[# - 1, #, 2*# - 1] == # - 1 &] (* Amiram Eldar, Jul 23 2024 *)
PROG
(Magma) [p: p in PrimesUpTo(5000) | -(p-1)^p mod (2*p-1) eq p];
CROSSREFS
Cf. A374912.
Sequence in context: A041161 A106947 A309429 * A258896 A262182 A142077
KEYWORD
nonn
AUTHOR
STATUS
approved