login
A374855
a(n) = (1/6)*Product_{k=0..n} F(k)+6, where F=A000045 (Fibonacci numbers).
1
1, 7, 49, 392, 3528, 38808, 543312, 10322928, 278719056, 11148762240, 680074496640, 64607077180800, 9691061577120000, 2316163716931680000, 887090703584833440000, 546447873408257399040000, 542622738294399597246720000, 869824249485922554386492160000
OFFSET
0,2
COMMENTS
Trivially, a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.
MATHEMATICA
q[n_] := Fibonacci[n]
p[n_] := Product[q[k] + 6, {k, 0, n}]
Table[(1/6)*Simplify[p[n]], {n, 0, 20}]
CROSSREFS
Cf. A000045.
Sequence in context: A199554 A343583 A221462 * A366272 A366501 A090016
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 04 2024
STATUS
approved