login
A373720
Expansion of e.g.f. exp(x * (1 + x^2)^3).
1
1, 1, 1, 19, 73, 541, 5761, 35911, 515089, 5399353, 61253281, 991270171, 11862564121, 203249068309, 3295367161633, 52595413358671, 1060046073787681, 18422593177204081, 383150483373313729, 8042585703164409763, 165930214242407069161, 3968988522451484425741
OFFSET
0,4
FORMULA
a(n) = n! * Sum_{k=0..floor(3*n/7)} binomial(3*n-6*k,k)/(n-2*k)!.
a(n) == 1 (mod 18).
a(n) = a(n-1) + 9*(n-1)*(n-2)*a(n-3) + 15*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5) + 7*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*a(n-7).
PROG
(PARI) a(n) = n!*sum(k=0, 3*n\7, binomial(3*n-6*k, k)/(n-2*k)!);
CROSSREFS
Sequence in context: A255897 A220447 A294460 * A118593 A047979 A373668
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 15 2024
STATUS
approved