OFFSET
1,30
COMMENTS
The first nonzero entries are a(30)=3, a(42)=9, a(45)=144, a(60)=4392. It is proved that a(2^a p^b)=0, if p is an odd prime, a,b>=0. Also a(pq)=0 and a(2pq)=(2^(p-1)-1)(2^(q-1)-1)/(pq), if p and q are distinct odd primes.
LINKS
Kevin G. Hare and Michael J. Mossinghoff, Sporadic Reinhardt Polygons, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science 49, no. 3 (2013): 540-57.
Kevin G. Hare and Michael J. Mossinghoff, Most Reinhardt Polygons Are Sporadic, Geom. Dedicata 198 (2019): 1-18.
Michael J. Mossinghoff, Enumerating Isodiametric and Isoperimetric Polygons, J. Combin. Theory Ser. A 118, no. 6 (2011): 1801-15.
Michael Mossinghoff, I love Reinhardt Polygons, ICERM 2014.
Wikipedia, Reinhardt polygon
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernd Mulansky, Aug 04 2024
STATUS
approved