login
A373653
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-5*k-1,k).
1
1, 1, 1, 4, 7, 16, 34, 71, 153, 322, 686, 1455, 3088, 6558, 13917, 29548, 62721, 133146, 282646, 599998, 1273690, 2703794, 5739647, 12184181, 25864698, 54905857, 116554700, 247423522, 525233175, 1114970351, 2366870474, 5024416818, 10665883415, 22641646338
OFFSET
0,4
FORMULA
G.f.: 1 / (1 - x/(1 - x^2)^3).
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 6.
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(3*n-5*k-1, k));
CROSSREFS
Sequence in context: A285654 A051049 A298415 * A108122 A192800 A027609
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 12 2024
STATUS
approved