login
Decimal expansion of Product_{k>=1} f(2*k)^2/(f(2*k-1) * f(2*k+1)), where f(k) = k^(1/k^2).
1

%I #6 May 28 2024 05:29:04

%S 1,2,2,4,6,2,3,1,4,0,5,8,5,1,1,1,1,4,5,5,9,5,2,5,7,0,4,5,1,6,2,1,5,8,

%T 9,4,7,2,0,1,0,1,8,4,4,8,3,2,0,3,2,1,5,1,9,8,3,1,0,8,8,2,7,8,9,9,0,7,

%U 0,6,9,3,3,4,7,9,0,1,1,6,5,5,6,5,4,0,0,4,3,2,5,0,6,1,3,1,8,4,4,2,2,7,3,8,0

%N Decimal expansion of Product_{k>=1} f(2*k)^2/(f(2*k-1) * f(2*k+1)), where f(k) = k^(1/k^2).

%H Dirk Huylebrouck, <a href="https://doi.org/10.4169/amer.math.monthly.122.04.371">Generalizing Wallis' formula</a>, The American Mathematical Monthly, Vol. 122, No. 4 (2015), pp. 371-372; <a href="https://www.jstor.org/stable/10.4169/amer.math.monthly.122.04.371">alternative link</a>; <a href="https://arxiv.org/abs/1402.6577">arXiv preprint</a>, arXiv:1402.6577 [math.HO], 2014.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet eta function</a>.

%F Equals exp(2*eta'(2)) = exp(2*A210593), where eta is the Dirichlet eta function.

%F Equals (4*Pi*exp(gamma)/A^12)^zeta(2), where gamma is Euler's constant (A001620) and A is the Glaisher-Kinkelin constant (A074962).

%e (2^(1/2^2)/1^1^2) * (2^(1/2^2)/3^(1/3^2)) * (4^(1/4^2)/3^(1/3^2)) * (4^(1/4^2)/5^(1/5^2)) * ...

%e 1.22462314058511114559525704516215894720101844832032...

%t RealDigits[(4 * Pi * Exp[EulerGamma] / Glaisher^12)^Zeta[2], 10, 120][[1]]

%o (PARI) (4 * Pi * exp(Euler - 1 + 12*zeta'(-1)))^zeta(2)

%Y Cf. A001620, A013661, A073004, A074962, A210593, A373207.

%K nonn,cons

%O 1,2

%A _Amiram Eldar_, May 28 2024