login
A371570
Number of binary necklaces of length n which have more 01 than 00 substrings.
1
0, 0, 2, 3, 6, 15, 29, 56, 118, 237, 467, 946, 1905, 3796, 7618, 15303, 30614, 61319, 122951, 246202, 492971, 987542, 1977560, 3959289, 7927969, 15873190, 31776708, 63614397, 127346134, 254908115, 510233309, 1021273672, 2044071894, 4091064805, 8187770675
OFFSET
0,3
COMMENTS
A necklace may also be referred to as circular or cyclic strings.
FORMULA
a(n) = 2^n - A217464(n) - A371668(n).
a(n) = -(((n-3)*(n-2) - 8*(n-5)^2*(n-2)*a(n-5) + 4*(n*((3n-34)*n+117)-114)*a(n-4) + 2*(((32-3n)*n-95)*n+62)*a(n-3) + (((5n-52)*n+157)*n-114)*a(n-2) + (((39-4n)*n-103)*n+58)*a(n-1))/((n-6)*(n-3)*n)) for n>=7.
EXAMPLE
a(3) = 3: 011, 101, 110.
a(4) = 6: 0101, 0111, 1010, 1011, 1101, 1110.
a(5) = 15: 00101, 01001, 01010, 01011, 01101, 01111, 10010, 10100, 10101, 10110, 10111, 11010, 11011, 11101, 11110.
MATHEMATICA
tup[n_] := Tuples[{0, 1}, n];
tupToNec[n_] := Map[Append[#, #[[1]]] &, tup[n]];
cou[lst_List] := Count[lst, {0, 1}] > Count[lst, {0, 0}];
par[lst_List] := Partition[lst, 2, 1];
a[0] = 0;
a[n_] := Map[cou, Map[par, tupToNec[n]]] // Boole // Total;
Monitor[Table[a[n], {n, 0, 18}], {n, Table[a[m], {m, 0, n - 1}]}]
CROSSREFS
Cf. A217464 (necklaces with equal 00 and 01), A371668 (necklaces with more 00 than 01).
Cf. A126869 (necklaces with equal 00 and 11, for n>=1), A058622 (necklaces with more 00 than 11).
Cf. A163493 (strings with equal 00 and 01), A371358 (strings with more 00 than 01), A371564 (strings with more 01 than 00).
Sequence in context: A248652 A158027 A346776 * A100249 A138477 A375278
KEYWORD
nonn
AUTHOR
Robert P. P. McKone, Mar 28 2024
STATUS
approved