login
A371001
Least number k such that the number m of consecutive composite sums k + j^2, j = 0, ..., m is a new maximum.
4
4, 8, 21, 24, 26, 119, 134, 185, 290, 314, 626, 1784, 6041, 7556, 8876, 43181, 52454, 159731, 218084, 576239, 1478531, 2934539, 3085781, 3569114, 3802301, 4692866, 24307841, 25051934, 54168539, 285820856, 551855834, 742623164, 747988526, 1165052066, 3322447301
OFFSET
1,1
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..56 (terms a(1)-a(50) from Martin Ehrenstein)
EXAMPLE
See A371002.
PROG
(PARI) a371001_2(upto) = {my(n=0); forcomposite (k=4, upto, for (j=1, oo, if (isprime(k+j*j), if (j>n, print1([k, j-1], ", "); n=j); break)))};
\\ change [k, j-1] in print1 to k or j-1 to mute the results for the other sequence
a371001_2(5000000)
CROSSREFS
A371002 gives the corresponding counts m.
Sequence in context: A209451 A102559 A308233 * A037020 A094878 A233401
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Mar 07 2024
STATUS
approved