login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370463
E.g.f. satisfies A(x) = log(1 + x)/(1 - A(x))^3.
3
0, 1, 5, 74, 1704, 54474, 2225394, 110786976, 6506273544, 440368208280, 33752787590136, 2889747086330400, 273333159994125984, 28307010099549881088, 3185660442523728449664, 387117483236717961052800, 50518567433159392237036416, 7046383438320021239186859264
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (4*k-2)!/(3*k-1)! * Stirling1(n,k).
E.g.f.: Series_Reversion( exp(x * (1 - x)^3) - 1 ). - Seiichi Manyama, Sep 09 2024
PROG
(PARI) a(n) = sum(k=1, n, (4*k-2)!/(3*k-1)!*stirling(n, k, 1));
CROSSREFS
Sequence in context: A322446 A065894 A233013 * A126740 A251666 A192564
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 18 2024
STATUS
approved