login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369714
Number of solutions to 1^4*k_1 + 2^4*k_2 + ... + n^4*k_n = 1, where k_i are from {-1,0,1}, i=1..n.
0
0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 13, 25, 56, 110, 218, 494, 1216, 2702, 6477, 14752, 35758, 83730, 208107, 499459, 1250815, 3048590, 7787399, 19260830, 49686365, 124430675, 324018684, 820906005, 2155194085, 5514650519, 14578030389, 37630395887, 100201473164
OFFSET
0,10
FORMULA
a(n) = [x^1] Product_{k=1..n} (x^(k^4) + 1 + 1/x^(k^4)).
MAPLE
b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1, b(n, i-1)+
b(abs(n-i^4), i-1)+b(n+i^4, i-1))))(i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30)
end:
a:= n-> b(1, n):
seq(a(n), n=0..33); # Alois P. Heinz, Jan 30 2024
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 30 2024
EXTENSIONS
a(34)-a(37) from Alois P. Heinz, Jan 30 2024
STATUS
approved