login
A369545
Expansion of g.f. A(x) satisfying A(x) = A( x^2*(1+x)^2 ) / (x*(1+x)).
7
1, 1, 1, 3, 4, 6, 13, 31, 72, 142, 255, 465, 868, 1666, 3361, 7099, 15430, 34044, 75547, 167389, 367849, 797275, 1698682, 3557446, 7341014, 14981954, 30363966, 61351570, 123962309, 250941549, 509475411, 1038043409, 2123698576, 4365471714, 9022527237, 18760483331, 39258381744
OFFSET
1,4
COMMENTS
The radius of convergence r of the g.f. A(x) solves r*(1+r)^2 = 1 where r = (((29 + sqrt(837))/2)^(1/3) + ((29 - sqrt(837))/2)^(1/3) - 2)/3 = 0.465571231876768...
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A(x) = A( x^2*(1+x)^2 ) / (x*(1+x)).
(2) R(x*(1+x)*A(x)) = x^2*(1+x)^2, where R(A(x)) = x.
(3) A(x) = x * Product_{n>=1} F(n), where F(1) = 1+x, and F(n+1) = 1 + (F(n) - 1)^2 * F(n)^2 for n >= 1.
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 13*x^7 + 31*x^8 + 72*x^9 + 142*x^10 + 255*x^11 + 465*x^12 + 868*x^13 + 1666*x^14 + ...
RELATED SERIES.
A(x)^2/x = x + 2*x^2 + 3*x^3 + 8*x^4 + 15*x^5 + 26*x^6 + 55*x^7 + 124*x^8 + 284*x^9 + 616*x^10 + ... + A369552(n)*x^n + ...
Let R(x) be the series reversion of A(x),
R(x) = x - x^2 + x^3 - 3*x^4 + 10*x^5 - 27*x^6 + 73*x^7 - 229*x^8 + 749*x^9 - 2364*x^10 + 7519*x^11 - 24827*x^12 + ...
then R(x) and g.f. A(x) satisfy:
(1) R(A(x)) = x,
(2) R(x*(1+x)*A(x)) = x^2*(1 + x)^2.
GENERATING METHOD.
Define F(n), a polynomial in x of order 4^(n-1), by the following recurrence:
F(1) = (1 + x),
F(2) = (1 + x^2 * (1+x)^2),
F(3) = (1 + x^4 * (1+x)^4 * F(2)^2),
F(4) = (1 + x^8 * (1+x)^8 * F(2)^4 * F(3)^2),
F(5) = (1 + x^16 * (1+x)^16 * F(2)^8 * F(3)^4 * F(4)^2),
...
F(n+1) = 1 + (F(n) - 1)^2 * F(n)^2
...
Then the g.f. A(x) equals the infinite product:
A(x) = x * F(1) * F(2) * F(3) * ... * F(n) * ...
SPECIFIC VALUES.
A(t) = 1 at t = 0.4120046758325214384397473236003536598861660144927342909...
A(t) = 2*t at t = 0.3784692870047486765098838556524915548738750059484894725...
A(t) = 3*t at t = 0.4341759819254114048195281285997548356246123884244963574...
A(t) = 4*t at t = 0.4503991198003790196716692640273147965490188133038952185...
A(t) = 5*t at t = 0.4569468453244711249969175826010689125973557341955917137...
A(t) = 6*t at t = 0.4601365544772047206117359824349418391381182470957703685...
A(t) = 7*t at t = 0.4618937559082677697073270302481519549410810789191032971...
A(t) = 8*t at t = 0.4629494015907831262609899780911583211703795156858340575...
A(t) = 9*t at t = 0.4636260570981613757787278132015093203097054838324907566...
A(t) = 10*t at t = 0.464081935314930281442469188416597867797429631824213476...
PROG
(PARI) {a(n) = my(A=[1], F); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = polcoeff( subst(F, x, x^2*(1 + x)^2 ) - x*(1 + x)*F , #A+1) ); A[n]}
for(n=1, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2024
STATUS
approved