login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369423
Number of 3 X 3 Fishburn matrices with entries in the set {0,1,...,n}.
2
0, 10, 264, 2052, 9280, 30750, 83160, 194824, 410112, 794610, 1441000, 2475660, 4065984, 6428422, 9837240, 14634000, 21237760, 30155994, 41996232, 57478420, 77448000, 102889710, 134942104, 174912792, 224294400, 284781250, 358286760, 446961564, 553212352
OFFSET
0,2
COMMENTS
Number of upper triangular 3 X 3 {0,1,...,n}-matrices with no zero rows or columns.
FORMULA
a(n) = n^3*(n+1)*(n^2+3*n+1) = n^6 + 4*n^5 + 4*n^4 + n^3.
G.f.: 2*x*(4*x^4-55*x^3-207*x^2-97*x-5)/(x-1)^7.
EXAMPLE
a(1) = 10:
[100] [110] [100] [110] [101] [111] [101] [111] [110] [111]
[ 10] [ 10] [ 11] [ 11] [ 10] [ 10] [ 11] [ 11] [ 01] [ 01]
[ 1] [ 1] [ 1] [ 1] [ 1] [ 1] [ 1] [ 1] [ 1] [ 1].
MAPLE
a:= n-> n^3*(n+1)*(n^2+3*n+1):
seq(a(n), n=0..28);
MATHEMATICA
Table[n^3*(n + 1)*(n^2 + 3*n + 1), {n, 0, 50}] (* Paolo Xausa, Jun 09 2024 *)
CROSSREFS
Row n=3 of A369415.
Sequence in context: A217911 A054593 A290041 * A160481 A060608 A003388
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jan 23 2024
STATUS
approved