OFFSET
1,3
COMMENTS
Also the Wolf-Kawalec constant of index 0.
For the Wolf-Kawalec constant of index 1 see A368547.
For the Wolf-Kawalec constant of index 2 see A368568.
Let g(n) be the Wolf-Kawalec constant of index n; then the function
zeta(x)/zeta(2*x) - 6/(Pi^2*(x-1))
has the expansion
Sum_{n>=0} (-1)^n*(g(n)/n!)*(x-1)^n
at x=1.
LINKS
Artur Kawalec, On the series expansion of a square-free zeta series, arXiv:2312.16811 [math.NT], 2023.
Marek Wolf, Numerical Determination of a Certain Mathematical Constant Related to the Mobius Function, Computational Methods in Science and Technology, Volume 29 (1-4) 2023, 17-20 see formulas (26) and (27).
FORMULA
Equals (6/Pi^2)*(24*Glaisher - gamma - 2*log(2*Pi)) where Glaisher is A074962.
Equals lim_{x->oo} {(Sum_{n=1..x} abs(mu(n))/n) - 6*log(x)/Pi^2}.
EXAMPLE
1.0438945157119382974...
MATHEMATICA
RealDigits[6 EulerGamma/Pi^2 - 72 Zeta'[2]/Pi^4, 10, 105][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Dec 29 2023
STATUS
approved