%I #11 Dec 29 2023 06:30:29
%S 1,3,11,52,320,2486,23402,258252,3263528,46433648,734322672,
%T 12776283136,242519067056,4987324250416,110454579648688,
%U 2621008072506592,66341399843669760,1784150447268259456,50804574646886197888,1527058892582680257024
%N Expansion of e.g.f. exp(2*x) / (1 + log(1 - x)).
%F a(n) = 2^n + Sum_{k=1..n} (k-1)! * binomial(n,k) * a(n-k).
%F a(n) ~ n! * exp(n + 2 - 2*exp(-1)) / (exp(1) - 1)^(n+1). - _Vaclav Kotesovec_, Dec 29 2023
%o (PARI) a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=2^i+sum(j=1, i, (j-1)!*binomial(i, j)*v[i-j+1])); v;
%Y Cf. A007840, A291979, A330149, A368284.
%Y Cf. A368285.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Dec 19 2023