login
A367165
E.g.f. satisfies A(x) = 1 + A(x)^2 * (1 - exp(-x*A(x))).
1
1, 1, 5, 52, 835, 18216, 503349, 16855084, 663482831, 30028551760, 1536446339593, 87704127028068, 5525854843477995, 380920533712670056, 28518416931490444157, 2304386381189483726044, 199888539403801152219271, 18526504345764539763792576
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * (n+2*k)!/(n+k+1)! * Stirling2(n,k).
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*(n+2*k)!/(n+k+1)!*stirling(n, k, 2));
CROSSREFS
Cf. A367166.
Sequence in context: A280063 A363356 A365012 * A377324 A357346 A196531
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 07 2023
STATUS
approved