login
A366500
G.f. A(x) satisfies A(x) = 1 + x / ((1+x)^(7/2)*A(x)^(5/2)).
6
1, 1, -6, 36, -251, 1961, -16477, 145307, -1326227, 12420057, -118666032, 1152120806, -11333969511, 112728949041, -1131701419316, 11452480598696, -116702578057106, 1196469605151736, -12332629378843566, 127727907921601146, -1328542834131885506
OFFSET
0,3
FORMULA
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366432.
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(n+5*k/2-1,n-k) * binomial(7*k/2-1,k) / (7*k/2-1).
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(n+5*k/2-1, n-k)*binomial(7*k/2-1, k)/(7*k/2-1));
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 11 2023
STATUS
approved