login
A365122
G.f. satisfies A(x) = (1 + x / (1 - x*A(x))^3)^3.
1
1, 3, 12, 64, 372, 2319, 15105, 101649, 701073, 4929657, 35207220, 254690517, 1862325262, 13742311074, 102204992352, 765328009950, 5765316776550, 43661497944861, 332217854059362, 2538540859615095, 19471592691620310, 149871698475060433, 1157188723053901449
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = (1 + x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*(n-k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).
PROG
(PARI) a(n, s=3, t=3) = sum(k=0, n, binomial(t*(n-k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));
CROSSREFS
Sequence in context: A203508 A052757 A345883 * A233397 A206226 A371495
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 22 2023
STATUS
approved