login
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^5).
6

%I #20 Sep 11 2024 05:47:55

%S 1,2,15,163,2070,28698,421015,6425644,100977137,1622885389,

%T 26551709946,440744175801,7404449354076,125657625548824,

%U 2150963575012295,37094953102567208,643904274979347286,11241232087809137759,197247501440314516840,3476787208220672891388,61533794803235280779261

%N G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^5).

%F a(n) = Sum_{k=0..n} binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k) / (2*n+3*k+1).

%F x/(series_reversion(x*A(x)) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + ..., the g.f. of A215623. - _Peter Bala_, Sep 08 2024

%p A364331 := proc(n)

%p add( binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k)/(2*n+3*k+1),k=0..n) ;

%p end proc:

%p seq(A364331(n),n=0..70); # _R. J. Mathar_, Jul 25 2023

%o (PARI) a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+3*k+1, n-k)/(2*n+3*k+1));

%Y Cf. A007863, A069271, A073157, A215654, A215715, A364333.

%Y Cf. A215623, A215624, A239108, A364335, A364338.

%Y Cf. A200719.

%K nonn,easy

%O 0,2

%A _Seiichi Manyama_, Jul 18 2023